Robust Optimization of Active Distribution Networks Considering Source-Side Uncertainty and Load-Side Demand Response

Aiming to solve optimization scheduling difficulties caused by the double uncertainty of source-side photovoltaic (PV) output and load-side demand response in active distribution networks, this paper proposes a two-stage distribution robust optimization method. First, the first-stage model with the...

Full description

Saved in:
Bibliographic Details
Main Authors: Renbo Wu, Shuqin Liu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/13/3531
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming to solve optimization scheduling difficulties caused by the double uncertainty of source-side photovoltaic (PV) output and load-side demand response in active distribution networks, this paper proposes a two-stage distribution robust optimization method. First, the first-stage model with the objective of minimizing power purchase cost and the second-stage model with the co-optimization of active loss, distributed power generation cost, PV abandonment penalty, and load compensation cost under the worst probability distribution are constructed, and multiple constraints such as distribution network currents, node voltages, equipment outputs, and demand responses are comprehensively considered. Secondly, the second-order cone relaxation and linearization technique is adopted to deal with the nonlinear constraints, and the inexact column and constraint generation (iCCG) algorithm is designed to accelerate the solution process. The solution efficiency and accuracy are balanced by dynamically adjusting the convergence gap of the main problem. The simulation results based on the improved IEEE33 bus system show that the proposed method reduces the operation cost by 5.7% compared with the traditional robust optimization, and the cut-load capacity is significantly reduced at a confidence level of 0.95. The iCCG algorithm improves the computational efficiency by 35.2% compared with the traditional CCG algorithm, which verifies the effectiveness of the model in coping with the uncertainties and improving the economy and robustness.
ISSN:1996-1073