Dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materials

Abstract Polyanionic sodium cathode materials exhibit promising electrochemical properties and high stability, making this chemical space worth exploring to enhance the performance of sodium-ion batteries. Given the vast chemical space, fast and efficient computational methods are needed, highlighti...

Full description

Saved in:
Bibliographic Details
Main Authors: Martin Hoffmann Petersen, Jin Hyun Chang, Arghya Bhowmik, Juan Maria García Lastra
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-05799-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849339546222723072
author Martin Hoffmann Petersen
Jin Hyun Chang
Arghya Bhowmik
Juan Maria García Lastra
author_facet Martin Hoffmann Petersen
Jin Hyun Chang
Arghya Bhowmik
Juan Maria García Lastra
author_sort Martin Hoffmann Petersen
collection DOAJ
description Abstract Polyanionic sodium cathode materials exhibit promising electrochemical properties and high stability, making this chemical space worth exploring to enhance the performance of sodium-ion batteries. Given the vast chemical space, fast and efficient computational methods are needed, highlighting the need for machine learning (ML)-guided approaches. To support the ML-driven discovery, we have developed a comprehensive theoretical dataset comprising 113532 DFT-calculated structures with atomic charges and 184612 structures without atomic charges for four polyanion sodium-ion cathode materials: NaTMPO4 (olivine), NaTMPO4 (maricite), Na2TMSiO4, and $${Na}_{2.56}{TM}_{1.72}{({SO}_{4})}_{3}$$ N a 2 . 56 T M 1 . 72 ( S O 4 ) 3 , with transition metals TM ∈ {Fe, Mn, Co, Ni}. This dataset includes optimizations of structures, ab initio molecular dynamics simulation trajectories sampled at 1000 K, and structures generated from ML-driven molecular dynamics simulation at 1000 K using an active learning algorithm. The dataset contains both single and multiple-TM compositions, providing a diverse representation of cathode materials. Using cathode specific subsets of this dataset to train ML models, we demonstrate that we can create ML interatomic potentials that reproduces the DFT results of the polyanion sodium cathode materials.
format Article
id doaj-art-3e72bce504e14c23a36756e97624eeeb
institution Kabale University
issn 2052-4463
language English
publishDate 2025-08-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj-art-3e72bce504e14c23a36756e97624eeeb2025-08-20T03:44:06ZengNature PortfolioScientific Data2052-44632025-08-0112111010.1038/s41597-025-05799-8Dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materialsMartin Hoffmann Petersen0Jin Hyun Chang1Arghya Bhowmik2Juan Maria García Lastra3Technical University of Denmark, Department of Energy Conversion and StorageTechnical University of Denmark, Department of Energy Conversion and StorageTechnical University of Denmark, Department of Energy Conversion and StorageTechnical University of Denmark, Department of Energy Conversion and StorageAbstract Polyanionic sodium cathode materials exhibit promising electrochemical properties and high stability, making this chemical space worth exploring to enhance the performance of sodium-ion batteries. Given the vast chemical space, fast and efficient computational methods are needed, highlighting the need for machine learning (ML)-guided approaches. To support the ML-driven discovery, we have developed a comprehensive theoretical dataset comprising 113532 DFT-calculated structures with atomic charges and 184612 structures without atomic charges for four polyanion sodium-ion cathode materials: NaTMPO4 (olivine), NaTMPO4 (maricite), Na2TMSiO4, and $${Na}_{2.56}{TM}_{1.72}{({SO}_{4})}_{3}$$ N a 2 . 56 T M 1 . 72 ( S O 4 ) 3 , with transition metals TM ∈ {Fe, Mn, Co, Ni}. This dataset includes optimizations of structures, ab initio molecular dynamics simulation trajectories sampled at 1000 K, and structures generated from ML-driven molecular dynamics simulation at 1000 K using an active learning algorithm. The dataset contains both single and multiple-TM compositions, providing a diverse representation of cathode materials. Using cathode specific subsets of this dataset to train ML models, we demonstrate that we can create ML interatomic potentials that reproduces the DFT results of the polyanion sodium cathode materials.https://doi.org/10.1038/s41597-025-05799-8
spellingShingle Martin Hoffmann Petersen
Jin Hyun Chang
Arghya Bhowmik
Juan Maria García Lastra
Dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materials
Scientific Data
title Dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materials
title_full Dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materials
title_fullStr Dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materials
title_full_unstemmed Dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materials
title_short Dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materials
title_sort dataset exploring the atomic scale structure and ionic dynamics of polyanion sodium cathode materials
url https://doi.org/10.1038/s41597-025-05799-8
work_keys_str_mv AT martinhoffmannpetersen datasetexploringtheatomicscalestructureandionicdynamicsofpolyanionsodiumcathodematerials
AT jinhyunchang datasetexploringtheatomicscalestructureandionicdynamicsofpolyanionsodiumcathodematerials
AT arghyabhowmik datasetexploringtheatomicscalestructureandionicdynamicsofpolyanionsodiumcathodematerials
AT juanmariagarcialastra datasetexploringtheatomicscalestructureandionicdynamicsofpolyanionsodiumcathodematerials