Double-End Location Technology of Partial Discharge in Cables Based on Frequency-Domain Reflectometry

To realize the region determination and accurate location of cable partial discharge, this paper proposes a cable partial discharge double-end location technique based on frequency-domain reflectometry. The cable partial discharge double-end location technique based on frequency-domain reflectometry...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang Miao, Hongjing Liu, Ci Song, Hongda Li, Nan He, Jingzhu Teng, Baoqin Cao, Ruonan Bai, Xianglong Li, Haibao Mu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4710
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To realize the region determination and accurate location of cable partial discharge, this paper proposes a cable partial discharge double-end location technique based on frequency-domain reflectometry. The cable partial discharge double-end location technique based on frequency-domain reflectometry mainly includes the frequency band modulation technique and partial discharge location method. The frequency band modulation technique determines the effective frequency band range of the acquired cable transfer function through the frequency band range of the partial discharge signals measured at both ends, which ensures the reliability of the transfer function. The partial discharge location method constructs the cable partial discharge location function and the region determination function via spectral analysis of the cable transfer function obtained from the partial discharge signals, which realizes region determination and determines precise location of the cable partial discharge, respectively. Our simulation and experiment show that the cable partial discharge double-end location technique based on frequency-domain reflectometry can effectively determine the existence region of cable partial discharge and its accurate location (with a location error of less than 1%), showing good potential for practical application in engineering.
ISSN:1424-8220