Spatiotemporal Dynamics of Forest Carbon Sinks in China’s Qinba Mountains: Insights from Sun-Induced Chlorophyll Fluorescence Remote Sensing

Forest carbon sinks are crucial in mitigating climate change as integral components of the global carbon cycle. Accurately estimating forest carbon sinks using traditional remote sensing indices, such as Normalized Difference Vegetation Index(NDVI), presents significant challenges, particularly in c...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuhang Lian, Yi He, Li Wang, Yaoting Wu, Yujie Wang, Zixuan Xu, Xinwen Xu, Lei Wang
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/8/1418
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849714980870422528
author Yuhang Lian
Yi He
Li Wang
Yaoting Wu
Yujie Wang
Zixuan Xu
Xinwen Xu
Lei Wang
author_facet Yuhang Lian
Yi He
Li Wang
Yaoting Wu
Yujie Wang
Zixuan Xu
Xinwen Xu
Lei Wang
author_sort Yuhang Lian
collection DOAJ
description Forest carbon sinks are crucial in mitigating climate change as integral components of the global carbon cycle. Accurately estimating forest carbon sinks using traditional remote sensing indices, such as Normalized Difference Vegetation Index(NDVI), presents significant challenges, particularly in complex terrains and regions with variable climates. These limitations hinder the effective capture of photosynthetic dynamics. To address this gap, this study leverages Sun-Induced Chlorophyll Fluorescence (SIF) remote sensing, highlighting its superiority over traditional indices in capturing photosynthetic processes and offering a more precise approach to estimating carbon sinks in climate-sensitive mountainous areas. Using SIF data from GOSIF, alongside models for light-use efficiency and ecosystem respiration, this study estimates forest carbon sinks in the Qinba Mountains of China during the growing season (June to September) from 2011 to 2018. The results are further validated and analyzed in terms of forest age and type. Key findings include: (1) The average annual forest carbon sinks during the growing season was approximately 24.51 TgC; (2) Spatially, higher carbon sinks values (average 36.79 gC·m⁻<sup>2</sup>·month⁻<sup>1</sup>) were concentrated in the western and central Qinba areas, while southeastern and central-northern regions exhibited lower values (average 7.75 gC·m⁻<sup>2</sup>·month⁻<sup>1</sup>); (3) Temporally, minimal interannual variation was observed in the northwest, whereas the southeast showed fluctuating trends, with an initial decline followed by an increase; (4) Forest carbon sinks was significantly influenced by forest age, type, and altitude. Our findings demonstrate that plantation forests aged 10 to 30 years exhibit superior carbon sequestration capacity compared to natural forests, while natural forests aged 70 to 90 years also show significant carbon sinks potential. These results underscore the crucial influence of forest characteristics on carbon sequestration dynamics. By examining these spatiotemporal patterns in the Qinba Mountains, our study offers valuable insights for advancing China’s ‘dual carbon’ goals, emphasizing the importance of strategic forest management in mitigating climate change.
format Article
id doaj-art-3e65645be9374ddb9fa4928e6e8f87e2
institution DOAJ
issn 2072-4292
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj-art-3e65645be9374ddb9fa4928e6e8f87e22025-08-20T03:13:32ZengMDPI AGRemote Sensing2072-42922025-04-01178141810.3390/rs17081418Spatiotemporal Dynamics of Forest Carbon Sinks in China’s Qinba Mountains: Insights from Sun-Induced Chlorophyll Fluorescence Remote SensingYuhang Lian0Yi He1Li Wang2Yaoting Wu3Yujie Wang4Zixuan Xu5Xinwen Xu6Lei Wang7College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, ChinaCollege of Urban and Environmental Sciences, Northwest University, Xi’an 710127, ChinaCollege of Urban and Environmental Sciences, Northwest University, Xi’an 710127, ChinaCollege of Urban and Environmental Sciences, Northwest University, Xi’an 710127, ChinaCollege of Urban and Environmental Sciences, Northwest University, Xi’an 710127, ChinaCollege of Urban and Environmental Sciences, Northwest University, Xi’an 710127, ChinaCollege of Urban and Environmental Sciences, Northwest University, Xi’an 710127, ChinaCollege of Urban and Environmental Sciences, Northwest University, Xi’an 710127, ChinaForest carbon sinks are crucial in mitigating climate change as integral components of the global carbon cycle. Accurately estimating forest carbon sinks using traditional remote sensing indices, such as Normalized Difference Vegetation Index(NDVI), presents significant challenges, particularly in complex terrains and regions with variable climates. These limitations hinder the effective capture of photosynthetic dynamics. To address this gap, this study leverages Sun-Induced Chlorophyll Fluorescence (SIF) remote sensing, highlighting its superiority over traditional indices in capturing photosynthetic processes and offering a more precise approach to estimating carbon sinks in climate-sensitive mountainous areas. Using SIF data from GOSIF, alongside models for light-use efficiency and ecosystem respiration, this study estimates forest carbon sinks in the Qinba Mountains of China during the growing season (June to September) from 2011 to 2018. The results are further validated and analyzed in terms of forest age and type. Key findings include: (1) The average annual forest carbon sinks during the growing season was approximately 24.51 TgC; (2) Spatially, higher carbon sinks values (average 36.79 gC·m⁻<sup>2</sup>·month⁻<sup>1</sup>) were concentrated in the western and central Qinba areas, while southeastern and central-northern regions exhibited lower values (average 7.75 gC·m⁻<sup>2</sup>·month⁻<sup>1</sup>); (3) Temporally, minimal interannual variation was observed in the northwest, whereas the southeast showed fluctuating trends, with an initial decline followed by an increase; (4) Forest carbon sinks was significantly influenced by forest age, type, and altitude. Our findings demonstrate that plantation forests aged 10 to 30 years exhibit superior carbon sequestration capacity compared to natural forests, while natural forests aged 70 to 90 years also show significant carbon sinks potential. These results underscore the crucial influence of forest characteristics on carbon sequestration dynamics. By examining these spatiotemporal patterns in the Qinba Mountains, our study offers valuable insights for advancing China’s ‘dual carbon’ goals, emphasizing the importance of strategic forest management in mitigating climate change.https://www.mdpi.com/2072-4292/17/8/1418Qinba mountain areaforest carbon sinksSIFclimate policyterrestrial carbon cycleecosystem respiration
spellingShingle Yuhang Lian
Yi He
Li Wang
Yaoting Wu
Yujie Wang
Zixuan Xu
Xinwen Xu
Lei Wang
Spatiotemporal Dynamics of Forest Carbon Sinks in China’s Qinba Mountains: Insights from Sun-Induced Chlorophyll Fluorescence Remote Sensing
Remote Sensing
Qinba mountain area
forest carbon sinks
SIF
climate policy
terrestrial carbon cycle
ecosystem respiration
title Spatiotemporal Dynamics of Forest Carbon Sinks in China’s Qinba Mountains: Insights from Sun-Induced Chlorophyll Fluorescence Remote Sensing
title_full Spatiotemporal Dynamics of Forest Carbon Sinks in China’s Qinba Mountains: Insights from Sun-Induced Chlorophyll Fluorescence Remote Sensing
title_fullStr Spatiotemporal Dynamics of Forest Carbon Sinks in China’s Qinba Mountains: Insights from Sun-Induced Chlorophyll Fluorescence Remote Sensing
title_full_unstemmed Spatiotemporal Dynamics of Forest Carbon Sinks in China’s Qinba Mountains: Insights from Sun-Induced Chlorophyll Fluorescence Remote Sensing
title_short Spatiotemporal Dynamics of Forest Carbon Sinks in China’s Qinba Mountains: Insights from Sun-Induced Chlorophyll Fluorescence Remote Sensing
title_sort spatiotemporal dynamics of forest carbon sinks in china s qinba mountains insights from sun induced chlorophyll fluorescence remote sensing
topic Qinba mountain area
forest carbon sinks
SIF
climate policy
terrestrial carbon cycle
ecosystem respiration
url https://www.mdpi.com/2072-4292/17/8/1418
work_keys_str_mv AT yuhanglian spatiotemporaldynamicsofforestcarbonsinksinchinasqinbamountainsinsightsfromsuninducedchlorophyllfluorescenceremotesensing
AT yihe spatiotemporaldynamicsofforestcarbonsinksinchinasqinbamountainsinsightsfromsuninducedchlorophyllfluorescenceremotesensing
AT liwang spatiotemporaldynamicsofforestcarbonsinksinchinasqinbamountainsinsightsfromsuninducedchlorophyllfluorescenceremotesensing
AT yaotingwu spatiotemporaldynamicsofforestcarbonsinksinchinasqinbamountainsinsightsfromsuninducedchlorophyllfluorescenceremotesensing
AT yujiewang spatiotemporaldynamicsofforestcarbonsinksinchinasqinbamountainsinsightsfromsuninducedchlorophyllfluorescenceremotesensing
AT zixuanxu spatiotemporaldynamicsofforestcarbonsinksinchinasqinbamountainsinsightsfromsuninducedchlorophyllfluorescenceremotesensing
AT xinwenxu spatiotemporaldynamicsofforestcarbonsinksinchinasqinbamountainsinsightsfromsuninducedchlorophyllfluorescenceremotesensing
AT leiwang spatiotemporaldynamicsofforestcarbonsinksinchinasqinbamountainsinsightsfromsuninducedchlorophyllfluorescenceremotesensing