Neural Network-Based Nonlinear Fixed-Time Adaptive Practical Tracking Control for Quadrotor Unmanned Aerial Vehicles
This brief addresses the position and attitude tracking fixed-time practical control for quadrotor unmanned aerial vehicles (UAVs) subject to nonlinear dynamics. First, by combining the radial basis function neural networks (NNs) with virtual parameter estimating algorithms, a NN adaptive control sc...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/8828453 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This brief addresses the position and attitude tracking fixed-time practical control for quadrotor unmanned aerial vehicles (UAVs) subject to nonlinear dynamics. First, by combining the radial basis function neural networks (NNs) with virtual parameter estimating algorithms, a NN adaptive control scheme is developed for UAVs. Then, a fixed-time adaptive law is proposed for neural networks to achieve fixed-time stability, and convergence time is dependent only on control gain parameters. Based on Lyapunov analyses and fixed-time stability theory, it is proved that the fixed-time adaptive neural network control is finite-time stable and convergence time is dependent with control parameters without initial conditions. The effectiveness of the NN fixed-time control is given through a simulation of the UAV system. |
---|---|
ISSN: | 1076-2787 1099-0526 |