On Riemannian manifolds endowed with a locally conformal cosymplectic structure
We deal with a locally conformal cosymplectic manifold M(φ,Ω,ξ,η,g) admitting a conformal contact quasi-torse-forming vector field T. The presymplectic 2-form Ω is a locally conformal cosymplectic 2-form. It is shown that T is a 3-exterior concurrent vector field. Infinitesimal transformations of th...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2005-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Online Access: | http://dx.doi.org/10.1155/IJMMS.2005.3471 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We deal with a locally conformal cosymplectic manifold
M(φ,Ω,ξ,η,g) admitting a conformal contact quasi-torse-forming vector field T. The presymplectic 2-form Ω is a locally conformal cosymplectic 2-form. It is shown that T is a 3-exterior concurrent vector field. Infinitesimal transformations of the Lie algebra of ∧M are investigated. The Gauss map of the hypersurface Mξ normal to ξ is conformal and Mξ×Mξ is a Chen submanifold of M×M. |
|---|---|
| ISSN: | 0161-1712 1687-0425 |