Mechanical properties investigation of hybrid TI3C2TX MXene and carbon nanotube reinforced glass fiber epoxy composites

The current work, presents the synergistic effects of carbon nanotubes (CNTs) and MXene nanoplatelets (MXN) on the flexural, hardness, and water absorption properties of laminated glass fiber reinforced polymer (GFRP) composites. The composites specimens with various concentrations of CNTs and MXN w...

Full description

Saved in:
Bibliographic Details
Main Authors: Edan Khan, Kamesh Bodduru, Mesfin Kebede Kassa, Iqra Javid
Format: Article
Language:English
Published: Engineering Society for Corrosion, Belgrade 2024-09-01
Series:Zaštita Materijala
Subjects:
Online Access:https://www.zastita-materijala.org/index.php/home/article/view/1183
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The current work, presents the synergistic effects of carbon nanotubes (CNTs) and MXene nanoplatelets (MXN) on the flexural, hardness, and water absorption properties of laminated glass fiber reinforced polymer (GFRP) composites. The composites specimens with various concentrations of CNTs and MXN were fabricated by cost-effective vacuum-assisted hand lay-up technique. The results showed that the hybrid composite reinforced with CNT and MXN improved the flexural strength and hardness by 38% and 29%, respectively. It was also observed that the hybrid composite reinforced with MXN and CNT exhibited superior mechanical and water absorption properties. Moreover, MXN/CNT reinforced GFRP hybrid composites exhibited a weight gain of 1.004%, while the neat epoxy-reinforced GFRP composite showed a higher weight gain at 1.210%. Further, the elastic characteristics of hybrid glass fiber-reinforced epoxy composite were found to be significantly affected by the addition of MXNs rather than CNTs.
ISSN:0351-9465
2466-2585