Nonnegative solutions for indefinite Caffarelli–Kohn–Nirenberg-type problems with subcritical or critical growth

Abstract Using variational methods we prove the existence of nonnegative solutions for the following class of quasilinear problems given by: − div ( | x | − ϒ p | ∇ u | p − 2 ∇ u ) + | x | − b p ∗ | u | p − 2 u = λ | x | − b p ∗ a ( x ) g ( u ) + γ | x | − b p ∗ | u | p ∗ − 2 u in R N , for the subc...

Full description

Saved in:
Bibliographic Details
Main Authors: Sami Baraket, Anis Ben Ghorbal, Giovany M. Figueiredo
Format: Article
Language:English
Published: SpringerOpen 2024-11-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-024-01969-6
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850129430648717312
author Sami Baraket
Anis Ben Ghorbal
Giovany M. Figueiredo
author_facet Sami Baraket
Anis Ben Ghorbal
Giovany M. Figueiredo
author_sort Sami Baraket
collection DOAJ
description Abstract Using variational methods we prove the existence of nonnegative solutions for the following class of quasilinear problems given by: − div ( | x | − ϒ p | ∇ u | p − 2 ∇ u ) + | x | − b p ∗ | u | p − 2 u = λ | x | − b p ∗ a ( x ) g ( u ) + γ | x | − b p ∗ | u | p ∗ − 2 u in R N , for the subcritical case ( γ = 0 $\gamma =0$ ) and also for the critical case ( γ = 1 $\gamma =1$ ). The functions a : R N → R and g : R → R are continuous functions that satisfy some additional conditions, 1 < p < N $1 < p < N$ , 0 ≤ ϒ < N − p p $0 \leq \Upsilon < \frac{N-p}{p}$ , ϒ < b ≤ ϒ + 1 $\Upsilon < b \leq \Upsilon +1$ , p ∗ = p ∗ ( ϒ , b ) = p N N − d p $p^{*}=p^{*}(\Upsilon ,b)=\frac{pN}{N -d p}$ with d = 1 + ϒ − b $d = 1 + \Upsilon - b$ .
format Article
id doaj-art-3dfa823be3d44cbb8c43e8b40259dbc8
institution OA Journals
issn 1687-2770
language English
publishDate 2024-11-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj-art-3dfa823be3d44cbb8c43e8b40259dbc82025-08-20T02:33:00ZengSpringerOpenBoundary Value Problems1687-27702024-11-012024111210.1186/s13661-024-01969-6Nonnegative solutions for indefinite Caffarelli–Kohn–Nirenberg-type problems with subcritical or critical growthSami Baraket0Anis Ben Ghorbal1Giovany M. Figueiredo2Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU)Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU)Departamento de Matemática CEP, Universidade de BrasíliaAbstract Using variational methods we prove the existence of nonnegative solutions for the following class of quasilinear problems given by: − div ( | x | − ϒ p | ∇ u | p − 2 ∇ u ) + | x | − b p ∗ | u | p − 2 u = λ | x | − b p ∗ a ( x ) g ( u ) + γ | x | − b p ∗ | u | p ∗ − 2 u in R N , for the subcritical case ( γ = 0 $\gamma =0$ ) and also for the critical case ( γ = 1 $\gamma =1$ ). The functions a : R N → R and g : R → R are continuous functions that satisfy some additional conditions, 1 < p < N $1 < p < N$ , 0 ≤ ϒ < N − p p $0 \leq \Upsilon < \frac{N-p}{p}$ , ϒ < b ≤ ϒ + 1 $\Upsilon < b \leq \Upsilon +1$ , p ∗ = p ∗ ( ϒ , b ) = p N N − d p $p^{*}=p^{*}(\Upsilon ,b)=\frac{pN}{N -d p}$ with d = 1 + ϒ − b $d = 1 + \Upsilon - b$ .https://doi.org/10.1186/s13661-024-01969-6Variational methodsCaffarelliKohnNirenberg problemNonnegative solutions
spellingShingle Sami Baraket
Anis Ben Ghorbal
Giovany M. Figueiredo
Nonnegative solutions for indefinite Caffarelli–Kohn–Nirenberg-type problems with subcritical or critical growth
Boundary Value Problems
Variational methods
Caffarelli
Kohn
Nirenberg problem
Nonnegative solutions
title Nonnegative solutions for indefinite Caffarelli–Kohn–Nirenberg-type problems with subcritical or critical growth
title_full Nonnegative solutions for indefinite Caffarelli–Kohn–Nirenberg-type problems with subcritical or critical growth
title_fullStr Nonnegative solutions for indefinite Caffarelli–Kohn–Nirenberg-type problems with subcritical or critical growth
title_full_unstemmed Nonnegative solutions for indefinite Caffarelli–Kohn–Nirenberg-type problems with subcritical or critical growth
title_short Nonnegative solutions for indefinite Caffarelli–Kohn–Nirenberg-type problems with subcritical or critical growth
title_sort nonnegative solutions for indefinite caffarelli kohn nirenberg type problems with subcritical or critical growth
topic Variational methods
Caffarelli
Kohn
Nirenberg problem
Nonnegative solutions
url https://doi.org/10.1186/s13661-024-01969-6
work_keys_str_mv AT samibaraket nonnegativesolutionsforindefinitecaffarellikohnnirenbergtypeproblemswithsubcriticalorcriticalgrowth
AT anisbenghorbal nonnegativesolutionsforindefinitecaffarellikohnnirenbergtypeproblemswithsubcriticalorcriticalgrowth
AT giovanymfigueiredo nonnegativesolutionsforindefinitecaffarellikohnnirenbergtypeproblemswithsubcriticalorcriticalgrowth