Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system
This paper concerns the energy conservation for the weak solutions to the Navier–Stokes–Maxwell system. Although the Maxwell equation with hyperbolic nature, we still establish a $L^qL^p$ type condition guarantee validity of the energy equality for the weak solutions. We mention that there no regula...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-01-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.379/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206295830986752 |
---|---|
author | Ma, Dandan Wu, Fan |
author_facet | Ma, Dandan Wu, Fan |
author_sort | Ma, Dandan |
collection | DOAJ |
description | This paper concerns the energy conservation for the weak solutions to the Navier–Stokes–Maxwell system. Although the Maxwell equation with hyperbolic nature, we still establish a $L^qL^p$ type condition guarantee validity of the energy equality for the weak solutions. We mention that there no regularity assumption on the electric field $E$. |
format | Article |
id | doaj-art-3df55403c8b94d408ef96c31c7c465c3 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2023-01-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-3df55403c8b94d408ef96c31c7c465c32025-02-07T11:06:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G1919610.5802/crmath.37910.5802/crmath.379Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell systemMa, Dandan0Wu, Fan1College of Science, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, ChinaCollege of Science, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, ChinaThis paper concerns the energy conservation for the weak solutions to the Navier–Stokes–Maxwell system. Although the Maxwell equation with hyperbolic nature, we still establish a $L^qL^p$ type condition guarantee validity of the energy equality for the weak solutions. We mention that there no regularity assumption on the electric field $E$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.379/ |
spellingShingle | Ma, Dandan Wu, Fan Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system Comptes Rendus. Mathématique |
title | Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system |
title_full | Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system |
title_fullStr | Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system |
title_full_unstemmed | Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system |
title_short | Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system |
title_sort | shinbrot s energy conservation criterion for the 3d navier stokes maxwell system |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.379/ |
work_keys_str_mv | AT madandan shinbrotsenergyconservationcriterionforthe3dnavierstokesmaxwellsystem AT wufan shinbrotsenergyconservationcriterionforthe3dnavierstokesmaxwellsystem |