Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system

This paper concerns the energy conservation for the weak solutions to the Navier–Stokes–Maxwell system. Although the Maxwell equation with hyperbolic nature, we still establish a $L^qL^p$ type condition guarantee validity of the energy equality for the weak solutions. We mention that there no regula...

Full description

Saved in:
Bibliographic Details
Main Authors: Ma, Dandan, Wu, Fan
Format: Article
Language:English
Published: Académie des sciences 2023-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.379/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206295830986752
author Ma, Dandan
Wu, Fan
author_facet Ma, Dandan
Wu, Fan
author_sort Ma, Dandan
collection DOAJ
description This paper concerns the energy conservation for the weak solutions to the Navier–Stokes–Maxwell system. Although the Maxwell equation with hyperbolic nature, we still establish a $L^qL^p$ type condition guarantee validity of the energy equality for the weak solutions. We mention that there no regularity assumption on the electric field $E$.
format Article
id doaj-art-3df55403c8b94d408ef96c31c7c465c3
institution Kabale University
issn 1778-3569
language English
publishDate 2023-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-3df55403c8b94d408ef96c31c7c465c32025-02-07T11:06:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G1919610.5802/crmath.37910.5802/crmath.379Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell systemMa, Dandan0Wu, Fan1College of Science, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, ChinaCollege of Science, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, ChinaThis paper concerns the energy conservation for the weak solutions to the Navier–Stokes–Maxwell system. Although the Maxwell equation with hyperbolic nature, we still establish a $L^qL^p$ type condition guarantee validity of the energy equality for the weak solutions. We mention that there no regularity assumption on the electric field $E$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.379/
spellingShingle Ma, Dandan
Wu, Fan
Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system
Comptes Rendus. Mathématique
title Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system
title_full Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system
title_fullStr Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system
title_full_unstemmed Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system
title_short Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system
title_sort shinbrot s energy conservation criterion for the 3d navier stokes maxwell system
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.379/
work_keys_str_mv AT madandan shinbrotsenergyconservationcriterionforthe3dnavierstokesmaxwellsystem
AT wufan shinbrotsenergyconservationcriterionforthe3dnavierstokesmaxwellsystem