Fuzzy Lattice Reasoning for Pattern Classification Using a New Positive Valuation Function

This paper describes an enhancement of fuzzy lattice reasoning (FLR) classifier for pattern classification based on a positive valuation function. Fuzzy lattice reasoning (FLR) was described lately as a lattice data domain extension of fuzzy ARTMAP neural classifier based on a lattice inclusion meas...

Full description

Saved in:
Bibliographic Details
Main Authors: Yazdan Jamshidi Khezeli, Hossein Nezamabadi-pour
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Advances in Fuzzy Systems
Online Access:http://dx.doi.org/10.1155/2012/206121
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes an enhancement of fuzzy lattice reasoning (FLR) classifier for pattern classification based on a positive valuation function. Fuzzy lattice reasoning (FLR) was described lately as a lattice data domain extension of fuzzy ARTMAP neural classifier based on a lattice inclusion measure function. In this work, we improve the performance of FLR classifier by defining a new nonlinear positive valuation function. As a consequence, the modified algorithm achieves better classification results. The effectiveness of the modified FLR is demonstrated by examples on several well-known pattern recognition benchmarks.
ISSN:1687-7101
1687-711X