Parametric Study on the Backward-facing Step Height in the Mixing Chamber of Fluidic Oscillator
The improvement of the fluidic oscillator as an active flow control device is studied in depth. The interior geometry of the fluidic oscillator is modified by adding backward-facing step (BFS). Variations of BFS height (H) are 2, 4, 6, 8, and 10 mm. The study is carried out computationally using Ope...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Isfahan University of Technology
2025-03-01
|
| Series: | Journal of Applied Fluid Mechanics |
| Subjects: | |
| Online Access: | https://www.jafmonline.net/article_2626_8b8e2f384c3fd2aa526bea5129978b50.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849761019755233280 |
|---|---|
| author | W. Iskandar J. Julian M. I. Adhynugraha F. Hasim H. Harinaldi |
| author_facet | W. Iskandar J. Julian M. I. Adhynugraha F. Hasim H. Harinaldi |
| author_sort | W. Iskandar |
| collection | DOAJ |
| description | The improvement of the fluidic oscillator as an active flow control device is studied in depth. The interior geometry of the fluidic oscillator is modified by adding backward-facing step (BFS). Variations of BFS height (H) are 2, 4, 6, 8, and 10 mm. The study is carried out computationally using OpenFoam. An unstructured mesh is used in this study, with the mesh quality maintained at y+<5. The highest frequency increase occurs at BFS height of 10 mm, which is 36.45%. On the other hand, BFS also increases the average pressure drop by less than 5%, as observed across all height variations. Overall, this study suggests using BFS height of 10 mm. The increase in the momentum of the return flow within the feedback channel leads to a higher oscillation frequency of the fluidic oscillator. The increase in average pressure drop is due to the presence of a recirculation bubble right in the step. |
| format | Article |
| id | doaj-art-3da36d0b4f3942d4a7ed1c128969e788 |
| institution | DOAJ |
| issn | 1735-3572 1735-3645 |
| language | English |
| publishDate | 2025-03-01 |
| publisher | Isfahan University of Technology |
| record_format | Article |
| series | Journal of Applied Fluid Mechanics |
| spelling | doaj-art-3da36d0b4f3942d4a7ed1c128969e7882025-08-20T03:06:09ZengIsfahan University of TechnologyJournal of Applied Fluid Mechanics1735-35721735-36452025-03-011851205121610.47176/jafm.18.5.31002626Parametric Study on the Backward-facing Step Height in the Mixing Chamber of Fluidic OscillatorW. Iskandar0J. Julian1M. I. Adhynugraha2F. Hasim3H. Harinaldi4Fluid Mechanics Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Jawa Barat, 16424, IndonesiaDepartment of Mechanical Engineering, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, 12450, IndonesiaNational Research and Innovation Agency (BRIN), Jl. M.H. Thamrin, DKI Jakarta, 10340, IndonesiaNational Research and Innovation Agency (BRIN), Jl. M.H. Thamrin, DKI Jakarta, 10340, IndonesiaDepartment of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Jawa Barat, 16424, IndonesiaThe improvement of the fluidic oscillator as an active flow control device is studied in depth. The interior geometry of the fluidic oscillator is modified by adding backward-facing step (BFS). Variations of BFS height (H) are 2, 4, 6, 8, and 10 mm. The study is carried out computationally using OpenFoam. An unstructured mesh is used in this study, with the mesh quality maintained at y+<5. The highest frequency increase occurs at BFS height of 10 mm, which is 36.45%. On the other hand, BFS also increases the average pressure drop by less than 5%, as observed across all height variations. Overall, this study suggests using BFS height of 10 mm. The increase in the momentum of the return flow within the feedback channel leads to a higher oscillation frequency of the fluidic oscillator. The increase in average pressure drop is due to the presence of a recirculation bubble right in the step.https://www.jafmonline.net/article_2626_8b8e2f384c3fd2aa526bea5129978b50.pdfaverage pressure dropbfsfluidic oscillatorfrequencyheight |
| spellingShingle | W. Iskandar J. Julian M. I. Adhynugraha F. Hasim H. Harinaldi Parametric Study on the Backward-facing Step Height in the Mixing Chamber of Fluidic Oscillator Journal of Applied Fluid Mechanics average pressure drop bfs fluidic oscillator frequency height |
| title | Parametric Study on the Backward-facing Step Height in the Mixing Chamber of Fluidic Oscillator |
| title_full | Parametric Study on the Backward-facing Step Height in the Mixing Chamber of Fluidic Oscillator |
| title_fullStr | Parametric Study on the Backward-facing Step Height in the Mixing Chamber of Fluidic Oscillator |
| title_full_unstemmed | Parametric Study on the Backward-facing Step Height in the Mixing Chamber of Fluidic Oscillator |
| title_short | Parametric Study on the Backward-facing Step Height in the Mixing Chamber of Fluidic Oscillator |
| title_sort | parametric study on the backward facing step height in the mixing chamber of fluidic oscillator |
| topic | average pressure drop bfs fluidic oscillator frequency height |
| url | https://www.jafmonline.net/article_2626_8b8e2f384c3fd2aa526bea5129978b50.pdf |
| work_keys_str_mv | AT wiskandar parametricstudyonthebackwardfacingstepheightinthemixingchamberoffluidicoscillator AT jjulian parametricstudyonthebackwardfacingstepheightinthemixingchamberoffluidicoscillator AT miadhynugraha parametricstudyonthebackwardfacingstepheightinthemixingchamberoffluidicoscillator AT fhasim parametricstudyonthebackwardfacingstepheightinthemixingchamberoffluidicoscillator AT hharinaldi parametricstudyonthebackwardfacingstepheightinthemixingchamberoffluidicoscillator |