Applications of Bregman-Opial Property to Bregman Nonspreading Mappings in Banach Spaces
The Opial property of Hilbert spaces and some other special Banach spaces is a powerful tool in establishing fixed point theorems for nonexpansive and, more generally, nonspreading mappings. Unfortunately, not every Banach space shares the Opial property. However, every Banach space has a similar B...
Saved in:
| Main Authors: | Eskandar Naraghirad, Ngai-Ching Wong, Jen-Chih Yao |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2014/272867 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Approximating Common Fixed Points of Bregman Weakly Relatively Nonexpansive Mappings in Banach Spaces
by: Chin-Tzong Pang, et al.
Published: (2014-01-01) -
A Halpern-Type Iteration Method for Bregman Nonspreading Mapping and Monotone Operators in Reflexive Banach Spaces
by: F. U. Ogbuisi, et al.
Published: (2019-01-01) -
Approximation of Fixed Points of Weak Bregman Relatively Nonexpansive Mappings in Banach Spaces
by: Jiawei Chen, et al.
Published: (2011-01-01) -
Convergence Theorems for Bregman K-Mappings and Mixed Equilibrium Problems in Reflexive Banach Spaces
by: Bashir Ali, et al.
Published: (2016-01-01) -
Strong Convergence Theorem for Bregman Strongly Nonexpansive Mappings and Equilibrium Problems in Reflexive Banach Spaces
by: Jinhua Zhu, et al.
Published: (2013-01-01)