Enhanced Harmonic Reduction and Voltage Utilization Ratio Improvement in ANPC Inverters Using an Advanced Hybrid SVPWM Technique
This paper proposes an Advanced Hybrid SVPWM (Space Vector Pulse Width Modulation) technique that integrates the benefits of RPS-PWM (Reference Point Saturation-Based PWM) and SVPWM to enhance the performance of three-level ANPC (Active Neutral Point Clamped) inverters. While RPS-PWM effectively red...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/7/1868 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper proposes an Advanced Hybrid SVPWM (Space Vector Pulse Width Modulation) technique that integrates the benefits of RPS-PWM (Reference Point Saturation-Based PWM) and SVPWM to enhance the performance of three-level ANPC (Active Neutral Point Clamped) inverters. While RPS-PWM effectively reduces switching harmonics, it suffers from lower voltage utilization. In contrast, SVPWM achieves higher voltage utilization but struggles with harmonic suppression. The proposed Advanced Hybrid SVPWM technique addresses these limitations by maintaining the voltage utilization level of RPS-PWM while significantly reducing harmonic distortion and increasing the output <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>r</mi><mi>m</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>. To validate the effectiveness of the proposed method, comprehensive PSIM simulations and DSP-based hardware experiments were conducted. Experimental results confirm that the Advanced Hybrid SVPWM achieves superior harmonic suppression compared to conventional RPS-PWM and SVPWM, while also delivering improved output voltage characteristics. These findings highlight the potential of the proposed technique for enhancing the performance of power electronic systems requiring high efficiency and low harmonic distortion. |
|---|---|
| ISSN: | 1996-1073 |