Networked Predictive Trajectory Tracking Control for Underactuated USV with Time-Varying Delays
This study explores the control framework for the trajectory tracking problem concerning unmanned surface vessels (USVs) in the presence of time-varying communication delays. To address the aforementioned problem, a novel networked predictive sliding mode control architecture is proposed by integrat...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Journal of Marine Science and Engineering |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-1312/13/1/132 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study explores the control framework for the trajectory tracking problem concerning unmanned surface vessels (USVs) in the presence of time-varying communication delays. To address the aforementioned problem, a novel networked predictive sliding mode control architecture is proposed by integrating a discrete sliding mode control technique and predictive control scheme. By leveraging a first-order forward Euler discretization approach, a discrete-time model of USVs was initially formulated. Then, a virtual velocity controller was developed to convert the position tracking into expected velocity tracking, which was achieved by utilizing a sliding mode control. Subsequently, a networked predictive control technique was performed to compensate for the time-varying delays. Finally, theoretical analysis and extensive comparative simulation tests demonstrated that the proposed control scheme guaranteed complete compensation for time-varying delays while ensuring the stability of the closed-loop system. |
---|---|
ISSN: | 2077-1312 |