Networked Predictive Trajectory Tracking Control for Underactuated USV with Time-Varying Delays

This study explores the control framework for the trajectory tracking problem concerning unmanned surface vessels (USVs) in the presence of time-varying communication delays. To address the aforementioned problem, a novel networked predictive sliding mode control architecture is proposed by integrat...

Full description

Saved in:
Bibliographic Details
Main Authors: Tao Lei, Yuanqiao Wen, Yi Yu, Minglong Zhang, Xin Xiong, Kang Tian
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/1/132
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the control framework for the trajectory tracking problem concerning unmanned surface vessels (USVs) in the presence of time-varying communication delays. To address the aforementioned problem, a novel networked predictive sliding mode control architecture is proposed by integrating a discrete sliding mode control technique and predictive control scheme. By leveraging a first-order forward Euler discretization approach, a discrete-time model of USVs was initially formulated. Then, a virtual velocity controller was developed to convert the position tracking into expected velocity tracking, which was achieved by utilizing a sliding mode control. Subsequently, a networked predictive control technique was performed to compensate for the time-varying delays. Finally, theoretical analysis and extensive comparative simulation tests demonstrated that the proposed control scheme guaranteed complete compensation for time-varying delays while ensuring the stability of the closed-loop system.
ISSN:2077-1312