Comparative Analysis of Satellite-Based Precipitation Products During Extreme Rainfall from Super Typhoon Yagi in Hanoi, Vietnam (September 2024)

This study aimed to compare and evaluate three satellite-based precipitation estimation products: Integrated Multi-satellitE Retrievals for Global Precipitation Measurement Early Run (IMERG-Early Run), Climate Prediction Center MORPHing technique Real Time (CMORPH-RT), and Precipitation Estimation f...

Full description

Saved in:
Bibliographic Details
Main Authors: Viet Duc Nguyen, Nazak Rouzegari, Vu Dao, Fahad Almutlaq, Phu Nguyen, Soroosh Sorooshian
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/9/1598
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to compare and evaluate three satellite-based precipitation estimation products: Integrated Multi-satellitE Retrievals for Global Precipitation Measurement Early Run (IMERG-Early Run), Climate Prediction Center MORPHing technique Real Time (CMORPH-RT), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Dynamic Infrared Rain rate Now (PDIR-Now) to identify the optimal integration strategies to improve the extreme rainfall estimation during Super Typhoon Yagi (September, 2024) in Hanoi, Vietnam, using validation data from 25 ground stations. In-depth analysis of three extreme rainfall series during Typhoon Yagi (6–9 September 2024), examining 93 extreme rainfall events at the 95th percentile precipitation threshold (R95p = 21.78 mm/h), combined with statistics at lower percentile thresholds (R1p, R5p, R10p, and R90p) and upper percentile threshold (R99p), revealed IMERG-Early best captured the peak rainfall, CMORPH-RT achieved highest total rainfall accuracy, while PDIR-Now offered the best spatial analysis. However, limitations included time lags, inability to detect rainfall events above R99p (41.69 mm/hour), and low detection rates (8–12%) in areas first impacted by the typhoon. This study identified that integration strategies combining different satellite products based on their strengths at specific time scales showed potential for improved rainfall estimation: PDIR-Now with IMERG-Early (1–3 h) and IMERG-Early with CMORPH-RT (6–12 h). These integration approaches accounted for each product’s unique capabilities in capturing different aspects of extreme rainfall during super typhoon events.
ISSN:2072-4292