Correlation Between the Insolation Shadow Ratio and Thermal Comfort of Urban Outdoor Spaces in Residential Areas in Xi’an
Solar exposure and shading critically influence outdoor thermal comfort in residential areas, yet quantitative links between spatial morphology and microclimate remain insufficiently explored in cold-region cities. This study proposes a novel morphological indicator, the Insolation Shadow Ratio (ISR...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/12/1995 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Solar exposure and shading critically influence outdoor thermal comfort in residential areas, yet quantitative links between spatial morphology and microclimate remain insufficiently explored in cold-region cities. This study proposes a novel morphological indicator, the Insolation Shadow Ratio (ISR), to quantify sunlight–shade dynamics and investigates its correlation with outdoor thermal comfort (UTCI) in Xi’an, China. Combining field observations, microclimate simulations, and statistical analysis, we quantified ISR and UTCI across three representative outdoor spaces in a residential area. Photographic analysis and spatial parameterization were employed to calculate hourly ISR values. Significant correlations were observed between ISR and UTCI values. The measured data showed the strongest correlation at summer solstice at site C (Spearman’s r = 0.883, <i>p</i> < 0.01). GAM analysis of seasonal peak correlation data revealed that an optimal UTCI comfort range of 9 °C to 26 °C, corresponding to ISR thresholds of 0.0202–0.8384, achieved the highest autumn correlation at site C (r = 0.686, <i>p</i> < 0.01), while effectively balancing shade cooling effects and solar accessibility. The ISR framework provides a quantifiable tool for designers to optimize outdoor thermal environments and, when enhanced by parametric modeling tools, enables them to proactively optimize thermal performance during early-stage residential planning, offering a data-driven pathway for climate-resilient outdoor space design. |
|---|---|
| ISSN: | 2075-5309 |