Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites
Abstract Studies have increasingly aimed at improving the piezoresistive behavior of polymer‐based conductive composites (CPCs) for strain‐sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (Z...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley-VCH
2025-03-01
|
| Series: | Advanced Materials Interfaces |
| Subjects: | |
| Online Access: | https://doi.org/10.1002/admi.202400633 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850076197828952064 |
|---|---|
| author | Müslüm Kaplan Emre Alp Beate Krause Regine Boldt Petra Pötschke |
| author_facet | Müslüm Kaplan Emre Alp Beate Krause Regine Boldt Petra Pötschke |
| author_sort | Müslüm Kaplan |
| collection | DOAJ |
| description | Abstract Studies have increasingly aimed at improving the piezoresistive behavior of polymer‐based conductive composites (CPCs) for strain‐sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (ZnS NSs, 1–7 wt.%), synthesized via a one‐step hydrothermal method, into a poly(vinylidene fluoride) (PVDF) polymer matrix together with multi‐walled carbon nanotubes (MWCNTs). Field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), and X‐ray diffraction (XRD) analyses reveal that ZnS NSs comprise a mixture of ZnS0.96O0.04 and S phases. While of ZnS NSs minimally impact tensile properties of the PVDF/MWCNT composites, they reduce elongation at break at 5 wt.%. During 15‐cycle strain sensing up to 3% strain, ZnS NSs‐enhanced composites outperformed PVDF/1 wt.% MWCNT. The reference sample's resistance change ratio (ΔR/R0) decreased below 1% with increased cycles, while 1 wt.% ZnS NSs increased ΔR/R0 to 3%, reducing changes upon cycle increments. Higher ZnS NSs levels (3–7 wt.%) resulted in ΔR/R0 exceeding 4–5%, indicating enhanced strain sensing performance. Fourier‐transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) showed limited impact of ZnS NSs on the thermal properties and microstructure of the composites. |
| format | Article |
| id | doaj-art-3c783135f58e4eec9c77241cc82557d7 |
| institution | DOAJ |
| issn | 2196-7350 |
| language | English |
| publishDate | 2025-03-01 |
| publisher | Wiley-VCH |
| record_format | Article |
| series | Advanced Materials Interfaces |
| spelling | doaj-art-3c783135f58e4eec9c77241cc82557d72025-08-20T02:46:05ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-03-01125n/an/a10.1002/admi.202400633Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube CompositesMüslüm Kaplan0Emre Alp1Beate Krause2Regine Boldt3Petra Pötschke4Faculty of Engineering Architecture and Design Bartin University Bartin 74110 TurkeyFaculty of Engineering Architecture and Design Bartin University Bartin 74110 TurkeyLeibniz‐Institut für Polymerforschung Dresden e.V. (IPF) Hohe Str. 6 01069 Dresden GermanyLeibniz‐Institut für Polymerforschung Dresden e.V. (IPF) Hohe Str. 6 01069 Dresden GermanyLeibniz‐Institut für Polymerforschung Dresden e.V. (IPF) Hohe Str. 6 01069 Dresden GermanyAbstract Studies have increasingly aimed at improving the piezoresistive behavior of polymer‐based conductive composites (CPCs) for strain‐sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (ZnS NSs, 1–7 wt.%), synthesized via a one‐step hydrothermal method, into a poly(vinylidene fluoride) (PVDF) polymer matrix together with multi‐walled carbon nanotubes (MWCNTs). Field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), and X‐ray diffraction (XRD) analyses reveal that ZnS NSs comprise a mixture of ZnS0.96O0.04 and S phases. While of ZnS NSs minimally impact tensile properties of the PVDF/MWCNT composites, they reduce elongation at break at 5 wt.%. During 15‐cycle strain sensing up to 3% strain, ZnS NSs‐enhanced composites outperformed PVDF/1 wt.% MWCNT. The reference sample's resistance change ratio (ΔR/R0) decreased below 1% with increased cycles, while 1 wt.% ZnS NSs increased ΔR/R0 to 3%, reducing changes upon cycle increments. Higher ZnS NSs levels (3–7 wt.%) resulted in ΔR/R0 exceeding 4–5%, indicating enhanced strain sensing performance. Fourier‐transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) showed limited impact of ZnS NSs on the thermal properties and microstructure of the composites.https://doi.org/10.1002/admi.202400633inorganic semiconductormulti‐wall carbon nanotubes (MWCNTs)nanomaterialspiezoresistivitypoly(vinylidene fluoride) (PVDF)strain sensing |
| spellingShingle | Müslüm Kaplan Emre Alp Beate Krause Regine Boldt Petra Pötschke Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites Advanced Materials Interfaces inorganic semiconductor multi‐wall carbon nanotubes (MWCNTs) nanomaterials piezoresistivity poly(vinylidene fluoride) (PVDF) strain sensing |
| title | Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites |
| title_full | Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites |
| title_fullStr | Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites |
| title_full_unstemmed | Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites |
| title_short | Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites |
| title_sort | synthesis of semiconductor zinc sulfide nanospheres for improving piezoresistive sensing behavior of melt mixed poly vinylidene fluoride carbon nanotube composites |
| topic | inorganic semiconductor multi‐wall carbon nanotubes (MWCNTs) nanomaterials piezoresistivity poly(vinylidene fluoride) (PVDF) strain sensing |
| url | https://doi.org/10.1002/admi.202400633 |
| work_keys_str_mv | AT muslumkaplan synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites AT emrealp synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites AT beatekrause synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites AT regineboldt synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites AT petrapotschke synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites |