Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites

Abstract Studies have increasingly aimed at improving the piezoresistive behavior of polymer‐based conductive composites (CPCs) for strain‐sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (Z...

Full description

Saved in:
Bibliographic Details
Main Authors: Müslüm Kaplan, Emre Alp, Beate Krause, Regine Boldt, Petra Pötschke
Format: Article
Language:English
Published: Wiley-VCH 2025-03-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202400633
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850076197828952064
author Müslüm Kaplan
Emre Alp
Beate Krause
Regine Boldt
Petra Pötschke
author_facet Müslüm Kaplan
Emre Alp
Beate Krause
Regine Boldt
Petra Pötschke
author_sort Müslüm Kaplan
collection DOAJ
description Abstract Studies have increasingly aimed at improving the piezoresistive behavior of polymer‐based conductive composites (CPCs) for strain‐sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (ZnS NSs, 1–7 wt.%), synthesized via a one‐step hydrothermal method, into a poly(vinylidene fluoride) (PVDF) polymer matrix together with multi‐walled carbon nanotubes (MWCNTs). Field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), and X‐ray diffraction (XRD) analyses reveal that ZnS NSs comprise a mixture of ZnS0.96O0.04 and S phases. While of ZnS NSs minimally impact tensile properties of the PVDF/MWCNT composites, they reduce elongation at break at 5 wt.%. During 15‐cycle strain sensing up to 3% strain, ZnS NSs‐enhanced composites outperformed PVDF/1 wt.% MWCNT. The reference sample's resistance change ratio (ΔR/R0) decreased below 1% with increased cycles, while 1 wt.% ZnS NSs increased ΔR/R0 to 3%, reducing changes upon cycle increments. Higher ZnS NSs levels (3–7 wt.%) resulted in ΔR/R0 exceeding 4–5%, indicating enhanced strain sensing performance. Fourier‐transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) showed limited impact of ZnS NSs on the thermal properties and microstructure of the composites.
format Article
id doaj-art-3c783135f58e4eec9c77241cc82557d7
institution DOAJ
issn 2196-7350
language English
publishDate 2025-03-01
publisher Wiley-VCH
record_format Article
series Advanced Materials Interfaces
spelling doaj-art-3c783135f58e4eec9c77241cc82557d72025-08-20T02:46:05ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-03-01125n/an/a10.1002/admi.202400633Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube CompositesMüslüm Kaplan0Emre Alp1Beate Krause2Regine Boldt3Petra Pötschke4Faculty of Engineering Architecture and Design Bartin University Bartin 74110 TurkeyFaculty of Engineering Architecture and Design Bartin University Bartin 74110 TurkeyLeibniz‐Institut für Polymerforschung Dresden e.V. (IPF) Hohe Str. 6 01069 Dresden GermanyLeibniz‐Institut für Polymerforschung Dresden e.V. (IPF) Hohe Str. 6 01069 Dresden GermanyLeibniz‐Institut für Polymerforschung Dresden e.V. (IPF) Hohe Str. 6 01069 Dresden GermanyAbstract Studies have increasingly aimed at improving the piezoresistive behavior of polymer‐based conductive composites (CPCs) for strain‐sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (ZnS NSs, 1–7 wt.%), synthesized via a one‐step hydrothermal method, into a poly(vinylidene fluoride) (PVDF) polymer matrix together with multi‐walled carbon nanotubes (MWCNTs). Field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), and X‐ray diffraction (XRD) analyses reveal that ZnS NSs comprise a mixture of ZnS0.96O0.04 and S phases. While of ZnS NSs minimally impact tensile properties of the PVDF/MWCNT composites, they reduce elongation at break at 5 wt.%. During 15‐cycle strain sensing up to 3% strain, ZnS NSs‐enhanced composites outperformed PVDF/1 wt.% MWCNT. The reference sample's resistance change ratio (ΔR/R0) decreased below 1% with increased cycles, while 1 wt.% ZnS NSs increased ΔR/R0 to 3%, reducing changes upon cycle increments. Higher ZnS NSs levels (3–7 wt.%) resulted in ΔR/R0 exceeding 4–5%, indicating enhanced strain sensing performance. Fourier‐transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) showed limited impact of ZnS NSs on the thermal properties and microstructure of the composites.https://doi.org/10.1002/admi.202400633inorganic semiconductormulti‐wall carbon nanotubes (MWCNTs)nanomaterialspiezoresistivitypoly(vinylidene fluoride) (PVDF)strain sensing
spellingShingle Müslüm Kaplan
Emre Alp
Beate Krause
Regine Boldt
Petra Pötschke
Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites
Advanced Materials Interfaces
inorganic semiconductor
multi‐wall carbon nanotubes (MWCNTs)
nanomaterials
piezoresistivity
poly(vinylidene fluoride) (PVDF)
strain sensing
title Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites
title_full Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites
title_fullStr Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites
title_full_unstemmed Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites
title_short Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt‐Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites
title_sort synthesis of semiconductor zinc sulfide nanospheres for improving piezoresistive sensing behavior of melt mixed poly vinylidene fluoride carbon nanotube composites
topic inorganic semiconductor
multi‐wall carbon nanotubes (MWCNTs)
nanomaterials
piezoresistivity
poly(vinylidene fluoride) (PVDF)
strain sensing
url https://doi.org/10.1002/admi.202400633
work_keys_str_mv AT muslumkaplan synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites
AT emrealp synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites
AT beatekrause synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites
AT regineboldt synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites
AT petrapotschke synthesisofsemiconductorzincsulfidenanospheresforimprovingpiezoresistivesensingbehaviorofmeltmixedpolyvinylidenefluoridecarbonnanotubecomposites