Design and Development of a Low-Power IoT System for Continuous Temperature Monitoring

This article presents the development of a compact, high-precision, and energy-efficient temperature monitoring system designed for tracking applications where continuous and accurate thermal monitoring is essential. Built around the HY0020 System-on-Chip (SoC), the system integrates two bandgap-bas...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis Miguel Pires, João Figueiredo, Ricardo Martins, João Nascimento, José Martins
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Designs
Subjects:
Online Access:https://www.mdpi.com/2411-9660/9/3/73
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents the development of a compact, high-precision, and energy-efficient temperature monitoring system designed for tracking applications where continuous and accurate thermal monitoring is essential. Built around the HY0020 System-on-Chip (SoC), the system integrates two bandgap-based temperature sensors—one internal to the SoC and one external (Si7020-A20)—mounted on a custom PCB and powered by a coin cell battery. A distinctive feature of the system is its support for real-time parameterization of the internal sensor, which enables advanced capabilities such as thermal profiling, cross-validation, and onboard diagnostics. The system was evaluated under both room temperature and refrigeration conditions, demonstrating high accuracy with the internal sensor showing an average error of 0.041 °C and −0.36 °C, respectively, and absolute errors below ±0.5 °C. With an average current draw of just 0.01727 mA, the system achieves an estimated autonomy of 6.6 years on a 1000 mAh battery. Data are transmitted via Bluetooth Low Energy (BLE) to a Raspberry Pi 4 gateway and forwarded to an IoT cloud platform for remote access and analysis. With a total cost of approximately EUR 20 and built entirely from commercially available components, this system offers a scalable and cost-effective solution for a wide range of temperature-sensitive applications. Its combination of precision, long-term autonomy, and advanced diagnostic capabilities make it suitable for deployment in diverse fields such as supply chain monitoring, environmental sensing, biomedical storage, and smart infrastructure—where reliable, low-maintenance thermal tracking is essential.
ISSN:2411-9660