Estimation and Control of Positive Complex Networks Using Linear Programming
This paper focuses on event-triggered state estimation and control of positive complex networks. An event-triggered condition is provided for discrete-time complex networks by which an event-based state estimator and an estimator-based controller are designed through matrix decomposition technology....
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-09-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/12/19/2971 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper focuses on event-triggered state estimation and control of positive complex networks. An event-triggered condition is provided for discrete-time complex networks by which an event-based state estimator and an estimator-based controller are designed through matrix decomposition technology. Thus, the system is converted to an interval uncertain system. The positivity and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mn>1</mn></msub></semantics></math></inline-formula>-gain stability of complex networks are ensured by resorting to a co-positive Lyapunov function. All conditions are solvable in terms of linear programming. Finally, the effectiveness of the proposed state estimator and controller are verified by a numerical example. The main contributions of this paper are as follows: (i) A positive complex network framework is constructed based on an event-triggered strategy, (ii) a new state estimator and an estimator-based controller are proposed, and (iii) a simple analysis and design approach consisting of a co-positive Lyapunov function and linear programming is presented for positive complex networks. |
|---|---|
| ISSN: | 2227-7390 |