Nonfragile Estimator Design for Fractional-Order Neural Networks under Event-Triggered Mechanism

This paper is concerned with the nonfragile state estimation for a kind of delayed fractional-order neural network under the event-triggered mechanism (ETM). To reduce the bandwidth occupation of the communication network, the ETM is employed in the sensor-to-estimator channel. Moreover, in order to...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoguang Shao, Ming Lyu, Jie Zhang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2021/6695353
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is concerned with the nonfragile state estimation for a kind of delayed fractional-order neural network under the event-triggered mechanism (ETM). To reduce the bandwidth occupation of the communication network, the ETM is employed in the sensor-to-estimator channel. Moreover, in order to reflect the reality, the transmission delay is taken into account in the model establishment. Sufficient criteria are supplied to make sure that the augmented system is asymptotically stable by using the fractional-order Lyapunov indirect approach and the linear matrix inequality method. In the end, the theoretical result is shown by means of two numerical examples.
ISSN:1026-0226
1607-887X