ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA

The climate in Ambon, are influenced by sea climate and season climate, cause of this island arrounded by sea, it is make very high rainfall intensity. A very high collinearity between independent variables, make the estimate can not rely be ordinary least square method so it market with not real re...

Full description

Saved in:
Bibliographic Details
Main Authors: Gresyea L. Marcus, Henry J. Wattimanela, Yopi A. Lesnussa
Format: Article
Language:English
Published: Universitas Pattimura 2012-03-01
Series:Barekeng
Subjects:
Online Access:https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/202
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849406958620114944
author Gresyea L. Marcus
Henry J. Wattimanela
Yopi A. Lesnussa
author_facet Gresyea L. Marcus
Henry J. Wattimanela
Yopi A. Lesnussa
author_sort Gresyea L. Marcus
collection DOAJ
description The climate in Ambon, are influenced by sea climate and season climate, cause of this island arrounded by sea, it is make very high rainfall intensity. A very high collinearity between independent variables, make the estimate can not rely be ordinary least square method so it market with not real regretion coefficient and the collinearity. Collinearity can be detected by linier correlation coefficient between independent variables and also with VIF way. Regretion principal component analysis is used to remove collinearity and all of independent variable into model, this analysis is regretion analysis technique wher eare combinated with principal component analysis technique. The object of this analysis is to simplify the variable by overcast it dimension, we can do it removes the correlation between coefficient by transformation. Regresion can help to solve this case rainfall in Ambon on 2010. So the colinearity to independent variables can be overcome and then we can get the best regretion rutes.
format Article
id doaj-art-3bce1c607a0446cc96df6ba51233f9bb
institution Kabale University
issn 1978-7227
2615-3017
language English
publishDate 2012-03-01
publisher Universitas Pattimura
record_format Article
series Barekeng
spelling doaj-art-3bce1c607a0446cc96df6ba51233f9bb2025-08-20T03:36:13ZengUniversitas PattimuraBarekeng1978-72272615-30172012-03-0161314010.30598/barekengvol6iss1pp31-40202ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDAGresyea L. Marcus0Henry J. Wattimanela1Yopi A. Lesnussa2Jurusan Matematika FMIPA Universitas PattimuraJurusan Matematika FMIPA Universitas PattimuraJurusan Matematika FMIPA Universitas PattimuraThe climate in Ambon, are influenced by sea climate and season climate, cause of this island arrounded by sea, it is make very high rainfall intensity. A very high collinearity between independent variables, make the estimate can not rely be ordinary least square method so it market with not real regretion coefficient and the collinearity. Collinearity can be detected by linier correlation coefficient between independent variables and also with VIF way. Regretion principal component analysis is used to remove collinearity and all of independent variable into model, this analysis is regretion analysis technique wher eare combinated with principal component analysis technique. The object of this analysis is to simplify the variable by overcast it dimension, we can do it removes the correlation between coefficient by transformation. Regresion can help to solve this case rainfall in Ambon on 2010. So the colinearity to independent variables can be overcome and then we can get the best regretion rutes.https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/202rainfall, principal component, ordinary least square, colinearty, regretion
spellingShingle Gresyea L. Marcus
Henry J. Wattimanela
Yopi A. Lesnussa
ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA
Barekeng
rainfall, principal component, ordinary least square, colinearty, regretion
title ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA
title_full ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA
title_fullStr ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA
title_full_unstemmed ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA
title_short ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA
title_sort analisis regresi komponen utama untuk mengatasi masalah multikolinieritas dalam analisis regresi linier berganda
topic rainfall, principal component, ordinary least square, colinearty, regretion
url https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/202
work_keys_str_mv AT gresyealmarcus analisisregresikomponenutamauntukmengatasimasalahmultikolinieritasdalamanalisisregresilinierberganda
AT henryjwattimanela analisisregresikomponenutamauntukmengatasimasalahmultikolinieritasdalamanalisisregresilinierberganda
AT yopialesnussa analisisregresikomponenutamauntukmengatasimasalahmultikolinieritasdalamanalisisregresilinierberganda