In Vivo Assessment of Elasticity of Child Rib Cortical Bone Using Quantitative Computed Tomography

Elasticity of the child rib cortical bone is poorly known due to the difficulties in obtaining specimens to perform conventional tests. It was shown on the femoral cortical bone that elasticity is strongly correlated with density for both children and adults through a unique relationship. Thus, it i...

Full description

Saved in:
Bibliographic Details
Main Authors: Y. Zhu, F. Bermond, J. Payen de la Garanderie, J.-B. Pialat, B. Sandoz, D. Brizard, J.-P. Pracros, F. Rongieras, W. Skalli, D. Mitton
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Applied Bionics and Biomechanics
Online Access:http://dx.doi.org/10.1155/2017/2471368
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elasticity of the child rib cortical bone is poorly known due to the difficulties in obtaining specimens to perform conventional tests. It was shown on the femoral cortical bone that elasticity is strongly correlated with density for both children and adults through a unique relationship. Thus, it is assumed that the relationships between the elasticity and density of adult rib cortical bones could be expanded to include that of children. This study estimated in vivo the elasticity of the child rib cortical bone using quantitative computed tomography (QCT). Twenty-eight children (from 1 to 18 y.o.) were considered. Calibrated QCT images were prescribed for various thoracic pathologies. The Hounsfield units were converted to bone mineral density (BMD). A relationship between the BMD and the elasticity of the rib cortical bone was applied to estimate the elasticity of children’s ribs in vivo. The estimated elasticity increases with growth (7.1 ± 2.5 GPa at 1 y.o. up to 11.6 ± 1.9 GPa at 18 y.o.). This data is in agreement with the few previous values obtained using direct measurements. This methodology paves the way for in vivo assessment of the elasticity of the child cortical bone based on calibrated QCT images.
ISSN:1176-2322
1754-2103