On Spirallikeness of Entire Functions

In this article, we establish conditions under which certain entire functions represented as infinite products of their positive zeros are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></sem...

Full description

Saved in:
Bibliographic Details
Main Authors: Narjes Alabkary, Saiful R. Mondal
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/10/1566
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850127042234810368
author Narjes Alabkary
Saiful R. Mondal
author_facet Narjes Alabkary
Saiful R. Mondal
author_sort Narjes Alabkary
collection DOAJ
description In this article, we establish conditions under which certain entire functions represented as infinite products of their positive zeros are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-spirallike of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">cos</mo><mo>(</mo><mi>α</mi><mo>)</mo><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>. The discussion includes several examples featuring special functions such as Bessel, Struve, Lommel, and <i>q</i>-Bessel functions.
format Article
id doaj-art-3bb72b72aada423cbf8236a1a2e282e6
institution OA Journals
issn 2227-7390
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-3bb72b72aada423cbf8236a1a2e282e62025-08-20T02:33:47ZengMDPI AGMathematics2227-73902025-05-011310156610.3390/math13101566On Spirallikeness of Entire FunctionsNarjes Alabkary0Saiful R. Mondal1Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Hasa 31982, Saudi ArabiaDepartment of Mathematics and Statistics, College of Science, King Faisal University, Al-Hasa 31982, Saudi ArabiaIn this article, we establish conditions under which certain entire functions represented as infinite products of their positive zeros are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-spirallike of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">cos</mo><mo>(</mo><mi>α</mi><mo>)</mo><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>. The discussion includes several examples featuring special functions such as Bessel, Struve, Lommel, and <i>q</i>-Bessel functions.https://www.mdpi.com/2227-7390/13/10/1566γ-Spirallikenessentire functionsBessel functionsStruve functionsLommel functionsWright functions
spellingShingle Narjes Alabkary
Saiful R. Mondal
On Spirallikeness of Entire Functions
Mathematics
γ-Spirallikeness
entire functions
Bessel functions
Struve functions
Lommel functions
Wright functions
title On Spirallikeness of Entire Functions
title_full On Spirallikeness of Entire Functions
title_fullStr On Spirallikeness of Entire Functions
title_full_unstemmed On Spirallikeness of Entire Functions
title_short On Spirallikeness of Entire Functions
title_sort on spirallikeness of entire functions
topic γ-Spirallikeness
entire functions
Bessel functions
Struve functions
Lommel functions
Wright functions
url https://www.mdpi.com/2227-7390/13/10/1566
work_keys_str_mv AT narjesalabkary onspirallikenessofentirefunctions
AT saifulrmondal onspirallikenessofentirefunctions