Two-Dimensional Free Energy Surfaces for Electron Transfer Reactions in Solution

Change in intermolecular distance between electron donor (D) and acceptor (A) can induce intermolecular electron transfer (ET) even in nonpolar solvent, where solvent orientational polarization is absent. This was shown by making simple calculations of the energies of the initial and final states of...

Full description

Saved in:
Bibliographic Details
Main Authors: Shigeo Murata, Maged El-Kemary, M. Tachiya
Format: Article
Language:English
Published: Wiley 2008-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2008/150682
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Change in intermolecular distance between electron donor (D) and acceptor (A) can induce intermolecular electron transfer (ET) even in nonpolar solvent, where solvent orientational polarization is absent. This was shown by making simple calculations of the energies of the initial and final states of ET. In the case of polar solvent, the free energies are functions of both D-A distance and solvent orientational polarization. On the basis of 2-dimensional free energy surfaces, the relation of Marcus ET and exciplex formation is discussed. The transient effect in fluorescence quenching was measured for several D-A pairs in a nonpolar solvent. The results were analyzed by assuming a distance dependence of the ET rate that is consistent with the above model.
ISSN:1110-662X
1687-529X