Unearthing large pseudoscalar Yukawa couplings with machine learning

Abstract With the Large Hadron Collider’s Run 3 in progress, the 125GeV Higgs boson couplings are being examined in greater detail, while searching for additional scalars. Multi-Higgs frameworks allow Higgs couplings to significantly deviate from Standard Model values, enabling indirect probes of ex...

Full description

Saved in:
Bibliographic Details
Main Authors: Fernando Abreu de Souza, Rafael Boto, Miguel Crispim Romão, Pedro N. Figueiredo, Jorge C. Romão, João P. Silva
Format: Article
Language:English
Published: SpringerOpen 2025-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP07(2025)268
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849767569175609344
author Fernando Abreu de Souza
Rafael Boto
Miguel Crispim Romão
Pedro N. Figueiredo
Jorge C. Romão
João P. Silva
author_facet Fernando Abreu de Souza
Rafael Boto
Miguel Crispim Romão
Pedro N. Figueiredo
Jorge C. Romão
João P. Silva
author_sort Fernando Abreu de Souza
collection DOAJ
description Abstract With the Large Hadron Collider’s Run 3 in progress, the 125GeV Higgs boson couplings are being examined in greater detail, while searching for additional scalars. Multi-Higgs frameworks allow Higgs couplings to significantly deviate from Standard Model values, enabling indirect probes of extra scalars. We consider the possibility of large pseudoscalar Yukawa couplings in the softly-broken ℤ2 × ℤ2′ three-Higgs doublet model with CP violating coefficients. To explore the parameter space of the model, we employ a Machine Learning algorithm that significantly enhances sampling efficiency. Using it, we find new regions of parameter space and observable consequences, not found with previous techniques. This method leverages an Evolutionary Strategy to quickly converge towards valid regions with an additional Novelty Reward mechanism. We use this model as a prototype to illustrate the potential of the new techniques, applicable to any Physics Beyond the Standard Model scenario.
format Article
id doaj-art-3b5e6b03b0a54d74b68fcc95a2172cd0
institution DOAJ
issn 1029-8479
language English
publishDate 2025-07-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj-art-3b5e6b03b0a54d74b68fcc95a2172cd02025-08-20T03:04:08ZengSpringerOpenJournal of High Energy Physics1029-84792025-07-012025712610.1007/JHEP07(2025)268Unearthing large pseudoscalar Yukawa couplings with machine learningFernando Abreu de Souza0Rafael Boto1Miguel Crispim Romão2Pedro N. Figueiredo3Jorge C. Romão4João P. Silva5LIP — Laboratório de Instrumentação e Física Experimental de Partículas, Escola de Ciências, Campus de Gualtar, Universidade do MinhoDepartamento de Física and CFTP, Instituto Superior Técnico, Universidade de LisboaLIP — Laboratório de Instrumentação e Física Experimental de Partículas, Escola de Ciências, Campus de Gualtar, Universidade do MinhoDepartamento de Física and CFTP, Instituto Superior Técnico, Universidade de LisboaDepartamento de Física and CFTP, Instituto Superior Técnico, Universidade de LisboaDepartamento de Física and CFTP, Instituto Superior Técnico, Universidade de LisboaAbstract With the Large Hadron Collider’s Run 3 in progress, the 125GeV Higgs boson couplings are being examined in greater detail, while searching for additional scalars. Multi-Higgs frameworks allow Higgs couplings to significantly deviate from Standard Model values, enabling indirect probes of extra scalars. We consider the possibility of large pseudoscalar Yukawa couplings in the softly-broken ℤ2 × ℤ2′ three-Higgs doublet model with CP violating coefficients. To explore the parameter space of the model, we employ a Machine Learning algorithm that significantly enhances sampling efficiency. Using it, we find new regions of parameter space and observable consequences, not found with previous techniques. This method leverages an Evolutionary Strategy to quickly converge towards valid regions with an additional Novelty Reward mechanism. We use this model as a prototype to illustrate the potential of the new techniques, applicable to any Physics Beyond the Standard Model scenario.https://doi.org/10.1007/JHEP07(2025)268Multi-Higgs ModelsSpecific BSM Phenomenology
spellingShingle Fernando Abreu de Souza
Rafael Boto
Miguel Crispim Romão
Pedro N. Figueiredo
Jorge C. Romão
João P. Silva
Unearthing large pseudoscalar Yukawa couplings with machine learning
Journal of High Energy Physics
Multi-Higgs Models
Specific BSM Phenomenology
title Unearthing large pseudoscalar Yukawa couplings with machine learning
title_full Unearthing large pseudoscalar Yukawa couplings with machine learning
title_fullStr Unearthing large pseudoscalar Yukawa couplings with machine learning
title_full_unstemmed Unearthing large pseudoscalar Yukawa couplings with machine learning
title_short Unearthing large pseudoscalar Yukawa couplings with machine learning
title_sort unearthing large pseudoscalar yukawa couplings with machine learning
topic Multi-Higgs Models
Specific BSM Phenomenology
url https://doi.org/10.1007/JHEP07(2025)268
work_keys_str_mv AT fernandoabreudesouza unearthinglargepseudoscalaryukawacouplingswithmachinelearning
AT rafaelboto unearthinglargepseudoscalaryukawacouplingswithmachinelearning
AT miguelcrispimromao unearthinglargepseudoscalaryukawacouplingswithmachinelearning
AT pedronfigueiredo unearthinglargepseudoscalaryukawacouplingswithmachinelearning
AT jorgecromao unearthinglargepseudoscalaryukawacouplingswithmachinelearning
AT joaopsilva unearthinglargepseudoscalaryukawacouplingswithmachinelearning