Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures

This paper presents a novel computational approach for estimating fuzzy measures directly from Gaussian mixtures model (GMM). The mixture components of GMM provide the membership functions for the input-output fuzzy sets. By treating consequent part as a function of fuzzy measures, we derived its co...

Full description

Saved in:
Bibliographic Details
Main Author: Nishchal K. Verma
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Applied Computational Intelligence and Soft Computing
Online Access:http://dx.doi.org/10.1155/2012/402420
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850217469694705664
author Nishchal K. Verma
author_facet Nishchal K. Verma
author_sort Nishchal K. Verma
collection DOAJ
description This paper presents a novel computational approach for estimating fuzzy measures directly from Gaussian mixtures model (GMM). The mixture components of GMM provide the membership functions for the input-output fuzzy sets. By treating consequent part as a function of fuzzy measures, we derived its coefficients from the covariance matrices found directly from GMM and the defuzzified output constructed from both the premise and consequent parts of the nonadditive fuzzy rules that takes the form of Choquet integral. The computational burden involved with the solution of λ-measure is minimized using Q-measure. The fuzzy model whose fuzzy measures were computed using covariance matrices found in GMM has been successfully applied on two benchmark problems and one real-time electric load data of Indian utility. The performance of the resulting model for many experimental studies including the above-mentioned application is found to be better and comparable to recent available fuzzy models. The main contribution of this paper is the estimation of fuzzy measures efficiently and directly from covariance matrices found in GMM, avoiding the computational burden greatly while learning them iteratively and solving polynomial equations of order of the number of input-output variables.
format Article
id doaj-art-3b49d89aa2934530b17c5f752d534a9b
institution OA Journals
issn 1687-9724
1687-9732
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Applied Computational Intelligence and Soft Computing
spelling doaj-art-3b49d89aa2934530b17c5f752d534a9b2025-08-20T02:08:02ZengWileyApplied Computational Intelligence and Soft Computing1687-97241687-97322012-01-01201210.1155/2012/402420402420Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian MixturesNishchal K. Verma0Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, IndiaThis paper presents a novel computational approach for estimating fuzzy measures directly from Gaussian mixtures model (GMM). The mixture components of GMM provide the membership functions for the input-output fuzzy sets. By treating consequent part as a function of fuzzy measures, we derived its coefficients from the covariance matrices found directly from GMM and the defuzzified output constructed from both the premise and consequent parts of the nonadditive fuzzy rules that takes the form of Choquet integral. The computational burden involved with the solution of λ-measure is minimized using Q-measure. The fuzzy model whose fuzzy measures were computed using covariance matrices found in GMM has been successfully applied on two benchmark problems and one real-time electric load data of Indian utility. The performance of the resulting model for many experimental studies including the above-mentioned application is found to be better and comparable to recent available fuzzy models. The main contribution of this paper is the estimation of fuzzy measures efficiently and directly from covariance matrices found in GMM, avoiding the computational burden greatly while learning them iteratively and solving polynomial equations of order of the number of input-output variables.http://dx.doi.org/10.1155/2012/402420
spellingShingle Nishchal K. Verma
Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures
Applied Computational Intelligence and Soft Computing
title Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures
title_full Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures
title_fullStr Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures
title_full_unstemmed Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures
title_short Estimation of Fuzzy Measures Using Covariance Matrices in Gaussian Mixtures
title_sort estimation of fuzzy measures using covariance matrices in gaussian mixtures
url http://dx.doi.org/10.1155/2012/402420
work_keys_str_mv AT nishchalkverma estimationoffuzzymeasuresusingcovariancematricesingaussianmixtures