Comparing methods to measure the dispersion of breathing parameters during exercise testing: A simulation study based on real‐life parameters from patients with dysfunctional breathing

Abstract The dispersion of the tidal volume and of the breathing frequency have been used to diagnose dysfunctional breathing during cardio‐pulmonary exercise testing. No validated methods to objectively describe this dispersion exist. We aimed to validate such a method. We used simulations based on...

Full description

Saved in:
Bibliographic Details
Main Authors: Léon Genecand, Cyril Jaksic, Roberto Desponds, Gaëtan Simian, Ivan Guerreiro, Sara Thorens, Marco Altarelli, Isabelle Frésard, Chloé Cantero, Aurélien Bringard, Antoine Beurnier, Pierantonio Laveneziana, David Montani, Anne Bergeron, Frédéric Lador, Pierre‐Olivier Bridevaux
Format: Article
Language:English
Published: Wiley 2025-03-01
Series:Physiological Reports
Subjects:
Online Access:https://doi.org/10.14814/phy2.70233
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849762473124560896
author Léon Genecand
Cyril Jaksic
Roberto Desponds
Gaëtan Simian
Ivan Guerreiro
Sara Thorens
Marco Altarelli
Isabelle Frésard
Chloé Cantero
Aurélien Bringard
Antoine Beurnier
Pierantonio Laveneziana
David Montani
Anne Bergeron
Frédéric Lador
Pierre‐Olivier Bridevaux
author_facet Léon Genecand
Cyril Jaksic
Roberto Desponds
Gaëtan Simian
Ivan Guerreiro
Sara Thorens
Marco Altarelli
Isabelle Frésard
Chloé Cantero
Aurélien Bringard
Antoine Beurnier
Pierantonio Laveneziana
David Montani
Anne Bergeron
Frédéric Lador
Pierre‐Olivier Bridevaux
author_sort Léon Genecand
collection DOAJ
description Abstract The dispersion of the tidal volume and of the breathing frequency have been used to diagnose dysfunctional breathing during cardio‐pulmonary exercise testing. No validated methods to objectively describe this dispersion exist. We aimed to validate such a method. We used simulations based on real‐life parameters. Moving standard deviation (MSD) and residuals from locally estimated scatterplot smoothing (LOESS) were evaluated. The precision and the bias of each tested method at rest and during exercise simulations, with and without sighs, were measured. For LOESS, a 2nd degree polynomial was used, and different spans were tested (LOESS1, LOESS0.75, and LOESS0.5). For MSD, different number of points used for the calculation were tested (MSD7, MSD11, MSD15, and MSD19). The LOESS method was globally more precise, had less bias, and was less influenced by the trend as compared to MSD in almost all simulations except for extremely low dispersion combined with extreme trends. LOESS0.75 had intermediate bias and precision between LOESS0.5 and LOESS1 in all simulations. LOESS0.75 is a method that combines high precision, low bias, and low influenceability of trends. It could be considered as the method of choice to evaluate the dispersion of breathing parameters during cardiopulmonary exercise testing.
format Article
id doaj-art-3b48bd4d00fe4481bbc0f44e672c4c58
institution DOAJ
issn 2051-817X
language English
publishDate 2025-03-01
publisher Wiley
record_format Article
series Physiological Reports
spelling doaj-art-3b48bd4d00fe4481bbc0f44e672c4c582025-08-20T03:05:43ZengWileyPhysiological Reports2051-817X2025-03-01135n/an/a10.14814/phy2.70233Comparing methods to measure the dispersion of breathing parameters during exercise testing: A simulation study based on real‐life parameters from patients with dysfunctional breathingLéon Genecand0Cyril Jaksic1Roberto Desponds2Gaëtan Simian3Ivan Guerreiro4Sara Thorens5Marco Altarelli6Isabelle Frésard7Chloé Cantero8Aurélien Bringard9Antoine Beurnier10Pierantonio Laveneziana11David Montani12Anne Bergeron13Frédéric Lador14Pierre‐Olivier Bridevaux15Service de Pneumologie, Département de Médecine Hôpitaux Universitaires de Genève Genève SwitzerlandCentre de Recherche Clinique Hôpitaux Universitaires de Genève Genève SwitzerlandFaculté de Mathématique Université de Genève Genève SwitzerlandFaculté de Mathématique Université de Genève Genève SwitzerlandService de Pneumologie, Département de Médecine Hôpitaux Universitaires de Genève Genève SwitzerlandFaculté de Médecine Université de Genève Genève SwitzerlandService de Pneumologie Hôpital du Valais, Centre Hospitalier du Valais Romand Sion SwitzerlandService de Pneumologie Hôpital du Valais, Centre Hospitalier du Valais Romand Sion SwitzerlandService de Pneumologie, Département de Médecine Hôpitaux Universitaires de Genève Genève SwitzerlandService de Pneumologie, Département de Médecine Hôpitaux Universitaires de Genève Genève SwitzerlandUniversité Paris‐Saclay, School of Medicine Le Kremlin‐Bicêtre FranceAP‐HP, Groupe Hospitalier Universitaire APHP‐Sorbonne Université, Hôpitaux Pitié‐Salpêtrière, Saint‐Antoine et Tenon, Service Des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S) Paris FranceUniversité Paris‐Saclay, School of Medicine Le Kremlin‐Bicêtre FranceService de Pneumologie, Département de Médecine Hôpitaux Universitaires de Genève Genève SwitzerlandFaculté de Médecine Université de Genève Genève SwitzerlandFaculté de Médecine Université de Genève Genève SwitzerlandAbstract The dispersion of the tidal volume and of the breathing frequency have been used to diagnose dysfunctional breathing during cardio‐pulmonary exercise testing. No validated methods to objectively describe this dispersion exist. We aimed to validate such a method. We used simulations based on real‐life parameters. Moving standard deviation (MSD) and residuals from locally estimated scatterplot smoothing (LOESS) were evaluated. The precision and the bias of each tested method at rest and during exercise simulations, with and without sighs, were measured. For LOESS, a 2nd degree polynomial was used, and different spans were tested (LOESS1, LOESS0.75, and LOESS0.5). For MSD, different number of points used for the calculation were tested (MSD7, MSD11, MSD15, and MSD19). The LOESS method was globally more precise, had less bias, and was less influenced by the trend as compared to MSD in almost all simulations except for extremely low dispersion combined with extreme trends. LOESS0.75 had intermediate bias and precision between LOESS0.5 and LOESS1 in all simulations. LOESS0.75 is a method that combines high precision, low bias, and low influenceability of trends. It could be considered as the method of choice to evaluate the dispersion of breathing parameters during cardiopulmonary exercise testing.https://doi.org/10.14814/phy2.70233abnormal breathing patterncardio‐pulmonary exercise testingdispersiondysfunctional breathingsimulations
spellingShingle Léon Genecand
Cyril Jaksic
Roberto Desponds
Gaëtan Simian
Ivan Guerreiro
Sara Thorens
Marco Altarelli
Isabelle Frésard
Chloé Cantero
Aurélien Bringard
Antoine Beurnier
Pierantonio Laveneziana
David Montani
Anne Bergeron
Frédéric Lador
Pierre‐Olivier Bridevaux
Comparing methods to measure the dispersion of breathing parameters during exercise testing: A simulation study based on real‐life parameters from patients with dysfunctional breathing
Physiological Reports
abnormal breathing pattern
cardio‐pulmonary exercise testing
dispersion
dysfunctional breathing
simulations
title Comparing methods to measure the dispersion of breathing parameters during exercise testing: A simulation study based on real‐life parameters from patients with dysfunctional breathing
title_full Comparing methods to measure the dispersion of breathing parameters during exercise testing: A simulation study based on real‐life parameters from patients with dysfunctional breathing
title_fullStr Comparing methods to measure the dispersion of breathing parameters during exercise testing: A simulation study based on real‐life parameters from patients with dysfunctional breathing
title_full_unstemmed Comparing methods to measure the dispersion of breathing parameters during exercise testing: A simulation study based on real‐life parameters from patients with dysfunctional breathing
title_short Comparing methods to measure the dispersion of breathing parameters during exercise testing: A simulation study based on real‐life parameters from patients with dysfunctional breathing
title_sort comparing methods to measure the dispersion of breathing parameters during exercise testing a simulation study based on real life parameters from patients with dysfunctional breathing
topic abnormal breathing pattern
cardio‐pulmonary exercise testing
dispersion
dysfunctional breathing
simulations
url https://doi.org/10.14814/phy2.70233
work_keys_str_mv AT leongenecand comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT cyriljaksic comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT robertodesponds comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT gaetansimian comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT ivanguerreiro comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT sarathorens comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT marcoaltarelli comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT isabellefresard comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT chloecantero comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT aurelienbringard comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT antoinebeurnier comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT pierantoniolaveneziana comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT davidmontani comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT annebergeron comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT fredericlador comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing
AT pierreolivierbridevaux comparingmethodstomeasurethedispersionofbreathingparametersduringexercisetestingasimulationstudybasedonreallifeparametersfrompatientswithdysfunctionalbreathing