Robust Iterative Learning Control for 2-D Singular Fornasini–Marchesini Systems with Iteration-Varying Boundary States
This study first investigates robust iterative learning control (ILC) issue for a class of two-dimensional linear discrete singular Fornasini–Marchesini systems (2-D LDSFM) under iteration-varying boundary states. Initially, using the singular value decomposition theory, an equivalent dynamical deco...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-01-01
|
| Series: | Complexity |
| Online Access: | http://dx.doi.org/10.1155/2021/6686724 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study first investigates robust iterative learning control (ILC) issue for a class of two-dimensional linear discrete singular Fornasini–Marchesini systems (2-D LDSFM) under iteration-varying boundary states. Initially, using the singular value decomposition theory, an equivalent dynamical decomposition form of 2-D LDSFM is derived. A simple P-type ILC law is proposed such that the ILC tracking error can be driven into a residual range, the bound of which is relevant to the bound parameters of boundary states. Specially, while the boundary states of 2-D LDSFM satisfy iteration-invariant boundary states, accurate tracking on 2-D desired surface trajectory can be accomplished by using 2-D linear inequality theory. In addition, extension to 2-D LDSFM without direct transmission from inputs to outputs is presented. A numerical example is used to illustrate the effectiveness and feasibility of the designed ILC law. |
|---|---|
| ISSN: | 1076-2787 1099-0526 |