Chirp Signal Transform and Its Properties
The chirp signal exp(iπ(x-y)2) is a typical example of CAZAC (constant amplitude zero autocorrelation) sequence. Using the chirp signals, the chirp z transform and the chirp-Fourier transform were defined in order to calculate the discrete Fourier transform. We define a transform directly from the c...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2014/161989 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The chirp signal exp(iπ(x-y)2) is a typical example of CAZAC (constant amplitude zero autocorrelation) sequence. Using the chirp signals, the chirp z transform and the chirp-Fourier transform were defined in order to calculate the discrete Fourier transform. We define a transform directly from the chirp signals for an even or odd number N and the continuous version. We study the fundamental properties of the transform and how it can be applied to recursion problems and differential equations. Furthermore, when N is not prime and N=ML, we define a transform skipped L and develop the theory for it. |
|---|---|
| ISSN: | 1110-757X 1687-0042 |