Finite-Time Tracking Control for Nonstrict-Feedback State-Delayed Nonlinear Systems with Full-State Constraints and Unmodeled Dynamics
The problem of finite-time tracking control is discussed for a class of uncertain nonstrict-feedback time-varying state delay nonlinear systems with full-state constraints and unmodeled dynamics. Different from traditional finite-control methods, a C1 smooth finite-time adaptive control framework is...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/8887925 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of finite-time tracking control is discussed for a class of uncertain nonstrict-feedback time-varying state delay nonlinear systems with full-state constraints and unmodeled dynamics. Different from traditional finite-control methods, a C1 smooth finite-time adaptive control framework is introduced by employing a smooth switch between the fractional and cubic form state feedback, so that the desired fast finite-time control performance can be guaranteed. By constructing appropriate Lyapunov-Krasovskii functionals, the uncertain terms produced by time-varying state delays are compensated for and unmodeled dynamics is coped with by introducing a dynamical signal. In order to avoid the inherent problem of “complexity of explosion” in the backstepping-design process, the DSC technology with a novel nonlinear filter is introduced to simplify the structure of the controller. Furthermore, the results show that all the internal error signals are driven to converge into small regions in a finite time, and the full-state constraints are not violated. Simulation results verify the effectiveness of the proposed method. |
---|---|
ISSN: | 1076-2787 1099-0526 |