On subsets of asymptotic bases

Let $h\ge 2$ be an integer. In this paper, we prove that if $A$ is an asymptotic basis of order $h$ and $B$ is a nonempty subset of $A$, then either there exists a finite subset $F$ of $A$ such that $F\cup B$ is an asymptotic basis of order $h$, or for any $\varepsilon >0$, there exists a finite...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Ji-Zhen, Chen, Yong-Gao
Format: Article
Language:English
Published: Académie des sciences 2024-02-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.513/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206223239118848
author Xu, Ji-Zhen
Chen, Yong-Gao
author_facet Xu, Ji-Zhen
Chen, Yong-Gao
author_sort Xu, Ji-Zhen
collection DOAJ
description Let $h\ge 2$ be an integer. In this paper, we prove that if $A$ is an asymptotic basis of order $h$ and $B$ is a nonempty subset of $A$, then either there exists a finite subset $F$ of $A$ such that $F\cup B$ is an asymptotic basis of order $h$, or for any $\varepsilon >0$, there exists a finite subset $F_\varepsilon $ of $A$ such that $d_L(h(F_\varepsilon \cup B))\ge hd_L(B)-\varepsilon $, where $d_L(X)$ denotes the lower asymptotic density of $X$ and $hX$ denotes the set of all $x_1+\cdots +x_h$ with $x_i\in X$ $(1\le i\le h)$. This generalizes a result of Nathanson and Sárközy.
format Article
id doaj-art-3af80b6ce2634f04b4c1cdc88dc3e5c6
institution Kabale University
issn 1778-3569
language English
publishDate 2024-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-3af80b6ce2634f04b4c1cdc88dc3e5c62025-02-07T11:12:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-02-01362G1454910.5802/crmath.51310.5802/crmath.513On subsets of asymptotic basesXu, Ji-Zhen0Chen, Yong-Gao1Nanjing Vocational College of Information Technology,Nanjing 210023, People’s Republic of China; School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, People’s Republic of ChinaSchool of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, People’s Republic of ChinaLet $h\ge 2$ be an integer. In this paper, we prove that if $A$ is an asymptotic basis of order $h$ and $B$ is a nonempty subset of $A$, then either there exists a finite subset $F$ of $A$ such that $F\cup B$ is an asymptotic basis of order $h$, or for any $\varepsilon >0$, there exists a finite subset $F_\varepsilon $ of $A$ such that $d_L(h(F_\varepsilon \cup B))\ge hd_L(B)-\varepsilon $, where $d_L(X)$ denotes the lower asymptotic density of $X$ and $hX$ denotes the set of all $x_1+\cdots +x_h$ with $x_i\in X$ $(1\le i\le h)$. This generalizes a result of Nathanson and Sárközy.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.513/
spellingShingle Xu, Ji-Zhen
Chen, Yong-Gao
On subsets of asymptotic bases
Comptes Rendus. Mathématique
title On subsets of asymptotic bases
title_full On subsets of asymptotic bases
title_fullStr On subsets of asymptotic bases
title_full_unstemmed On subsets of asymptotic bases
title_short On subsets of asymptotic bases
title_sort on subsets of asymptotic bases
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.513/
work_keys_str_mv AT xujizhen onsubsetsofasymptoticbases
AT chenyonggao onsubsetsofasymptoticbases