Geometrical Analysis of 3D-Printed Polymer Spur Gears

In this paper, we are looking for the answer to the following question: what geometric deviations do polymer gears made by 3D printing have from the theoretical geometry? From a practical point of view, the question is whether the currently installed injection-molded gear can be replaced by a 3D-pri...

Full description

Saved in:
Bibliographic Details
Main Authors: Levente Czégé, Gábor Ruzicska
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/5/422
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we are looking for the answer to the following question: what geometric deviations do polymer gears made by 3D printing have from the theoretical geometry? From a practical point of view, the question is whether the currently installed injection-molded gear can be replaced by a 3D-printed gear. Thus, the measurements are also carried out on the sample gear and the comparison is made with this data as well. Knowing the data of the existing gear wheel, the CAD model was created, and based on this, samples of the gear were printed using various 3D printing machines. The printed gears were then subjected to geometrical analysis. During the inspection, we performed the measurement of the chordal thickness of the gear wheel using a gear tool caliper, instead of pin measurement and span measurement using a special micrometer, and 3D scanning and analysis. A surface roughness measurement was carried out as well. By conducting measurements on the injection-molded and 3D-printed samples, this research seeks to evaluate the reliability and limitations of the 3D-printed gears, providing insights into their industrial use. This study aims to determine whether 3D printing technologies can produce gears with sufficient accuracy and surface quality for practical applications. Based on the conducted analysis, general conclusions were drawn regarding the potential applicability of the 3D-printed gears. The experimental results indicate notable differences in dimensional accuracy between gears manufactured using Fused Deposition Modeling (FDM) and Selective Laser Sintering (SLS). In terms of chordal thickness measurements, FDM gears exhibited a mean relative error of 1.96 mm, whereas SLS gears showed a significantly higher average deviation of 5.64 mm. For the pin measurement, the relative error averaged 0.193 mm in the case of FDM gears, compared to 0.616 mm for SLS gears. Similarly, the span over four teeth measurements resulted in an average deviation of 0.153 mm for FDM gears, while SLS gears demonstrated a markedly higher mean error of 0.773 mm. With regard to surface roughness, it can be concluded that SLS-manufactured gears exhibit superior performance compared to FDM gears, with an average Ra value of 2.65 µm versus 9.28 µm, although their surface quality remains inferior to that of the injection-molded gear. In light of the higher relative errors observed in SLS gears compared to FDM gears, the dimensions of the theoretical model should be refined to improve the manufacturing accuracy of SLS-produced gears.
ISSN:2075-1702