A Fault Feature Extraction Method for Rolling Bearing Based on Intrinsic Time-Scale Decomposition and AR Minimum Entropy Deconvolution

It is very difficult to extract the feature frequency of the vibration signal of the rolling bearing early weak fault and in order to extract its feature frequency quickly and accurately. A method of extracting early weak fault vibration signal feature frequency of the rolling bearing by intrinsic t...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiakai Ding, Liangpei Huang, Dongming Xiao, Lingli Jiang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/6673965
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is very difficult to extract the feature frequency of the vibration signal of the rolling bearing early weak fault and in order to extract its feature frequency quickly and accurately. A method of extracting early weak fault vibration signal feature frequency of the rolling bearing by intrinsic time-scale decomposition (ITD) and autoregression (AR) minimum entropy deconvolution (MED) is proposed in this paper. Firstly, the original early weak fault vibration signal of the rolling bearing is decomposed by the ITD algorithm to proper rotations (PRs) with fault feature frequency. Then, the sample entropy value of each PR is calculated to find the largest PRs of the sample entropy. Finally, the AR-MED filtering algorithm is utilized to filter and reduce the noise of the largest PRs of the sample entropy value, and the early weak fault vibration signal feature frequency of the rolling bearing is accurately extracted. The results show that the ITD-AR-MED method can extract the early weak fault vibration signal feature frequency of the rolling bearing accurately.
ISSN:1070-9622
1875-9203