On the critical behavior for a Sobolev-type inequality with Hardy potential

We investigate the existence and nonexistence of weak solutions to the Sobolev-type inequality $ -\partial _t(\Delta u)-\Delta u+ \frac{\sigma }{|x|^2}u \ge |x|^{\mu }|u|^p$ in $(0,\infty )\times B$, under the inhomogeneous Dirichlet-type boundary condition $u(t,x)=f(x)$ on $(0,\infty )\times \parti...

Full description

Saved in:
Bibliographic Details
Main Authors: Jleli, Mohamed, Samet, Bessem
Format: Article
Language:English
Published: Académie des sciences 2024-02-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.534/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the existence and nonexistence of weak solutions to the Sobolev-type inequality $ -\partial _t(\Delta u)-\Delta u+ \frac{\sigma }{|x|^2}u \ge |x|^{\mu }|u|^p$ in $(0,\infty )\times B$, under the inhomogeneous Dirichlet-type boundary condition $u(t,x)=f(x)$ on $(0,\infty )\times \partial B$, where $B$ is the unit open ball of $\mathbb{R}^N$, $N\ge 2$, $\sigma >-\bigl (\frac{N-2}{2}\bigr )^2$, $\mu \in \mathbb{R}$ and $p>1$. In particular, when $\sigma \ne 0$, we show that the dividing line with respect to existence and nonexistence is given by a critical exponent that depends on $N$, $\sigma $ and $\mu $.
ISSN:1778-3569