A simplified counterexample to the integral representation of the relaxation of double integrals

We show that the lower-semicontinuous envelope of a non-convex double integral may not admit a representation as a double integral. By taking an integrand with value $+\infty $ except at three points (say $-1$, $0$ and $1$) we give a simple proof and an explicit formula for the relaxation that hopef...

Full description

Saved in:
Bibliographic Details
Main Author: Braides, Andrea
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.558/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206222499872768
author Braides, Andrea
author_facet Braides, Andrea
author_sort Braides, Andrea
collection DOAJ
description We show that the lower-semicontinuous envelope of a non-convex double integral may not admit a representation as a double integral. By taking an integrand with value $+\infty $ except at three points (say $-1$, $0$ and $1$) we give a simple proof and an explicit formula for the relaxation that hopefully may shed some light on this type of problems. This is a simplified version of examples by Mora-Corral and Tellini, and Kreisbeck and Zappale, who characterize the lower-semicontinuous envelope via Young measures.
format Article
id doaj-art-3a6dc66e03af475d899d50397d7149a5
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-3a6dc66e03af475d899d50397d7149a52025-02-07T11:21:12ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G548749110.5802/crmath.55810.5802/crmath.558A simplified counterexample to the integral representation of the relaxation of double integralsBraides, Andrea0SISSA, via Bonomea 265, Trieste, ItalyWe show that the lower-semicontinuous envelope of a non-convex double integral may not admit a representation as a double integral. By taking an integrand with value $+\infty $ except at three points (say $-1$, $0$ and $1$) we give a simple proof and an explicit formula for the relaxation that hopefully may shed some light on this type of problems. This is a simplified version of examples by Mora-Corral and Tellini, and Kreisbeck and Zappale, who characterize the lower-semicontinuous envelope via Young measures.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.558/
spellingShingle Braides, Andrea
A simplified counterexample to the integral representation of the relaxation of double integrals
Comptes Rendus. Mathématique
title A simplified counterexample to the integral representation of the relaxation of double integrals
title_full A simplified counterexample to the integral representation of the relaxation of double integrals
title_fullStr A simplified counterexample to the integral representation of the relaxation of double integrals
title_full_unstemmed A simplified counterexample to the integral representation of the relaxation of double integrals
title_short A simplified counterexample to the integral representation of the relaxation of double integrals
title_sort simplified counterexample to the integral representation of the relaxation of double integrals
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.558/
work_keys_str_mv AT braidesandrea asimplifiedcounterexampletotheintegralrepresentationoftherelaxationofdoubleintegrals
AT braidesandrea simplifiedcounterexampletotheintegralrepresentationoftherelaxationofdoubleintegrals