Assessing Chlorophyll-a Variability and Its Relationship with Decadal Climate Patterns in the Arabian Sea
The Arabian Sea has undergone significant warming since the mid-20th century, highlighting the importance of assessing how decadal climate patterns influence chlorophyll-a (Chl-a) and broader marine ecosystem dynamics. This study investigates the variability of Chl-a, sea surface temperature (SST),...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Journal of Marine Science and Engineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-1312/13/6/1170 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Arabian Sea has undergone significant warming since the mid-20th century, highlighting the importance of assessing how decadal climate patterns influence chlorophyll-a (Chl-a) and broader marine ecosystem dynamics. This study investigates the variability of Chl-a, sea surface temperature (SST), and sea level anomaly (SLA) over the past three decades, and their relationships with the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). The mean Chl-a concentration was 1.10 mg/m<sup>3</sup>, with peak levels exceeding 2 mg/m<sup>3</sup> between 2009 and 2013, and the lowest value (0.6 mg/m<sup>3</sup>) was recorded in 2014. Elevated Chl-a levels were consistently observed in February and March across both coastal and offshore regions. Empirical orthogonal function (EOF) analysis revealed distinct spatial patterns in Chl-a and SST, indicating dynamic regional variability. The SST increased by 0.709 °C over the past four decades, accompanied by a steady rise in the SLA of approximately 1 cm. The monthly mean Chl-a exhibited a strong inverse relationship with both the SST and SLA and a positive correlation with SST gradients (R<sup>2</sup> > 0.5). A positive correlation (R<sup>2</sup> > 0.5) was found between the PDO and Chl-a, whereas the PDO was negatively correlated with the SST and SLA. In contrast, the AMO was negatively correlated with Chl-a but positively associated with warming and SLA rise. These findings underline the contrasting roles of the PDO and AMO in modulating productivity and ocean dynamics in the Arabian Sea. This study emphasizes the need for continued monitoring to improve predictions of ecosystem responses under future climate change scenarios. |
|---|---|
| ISSN: | 2077-1312 |