Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries
Abstract The eco‐friendly processing of conjugated polymer binder for lithium‐ion batteries demands improved polymer solubility by introducing functional moieties, while this strategy will concurrently sacrifice polymer conductivity. Employing the polyfluorene‐based binder poly(2,7‐9,9 (di(oxy‐2,5,8...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2025-05-01
|
| Series: | Advanced Science |
| Subjects: | |
| Online Access: | https://doi.org/10.1002/advs.202416995 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850144773178916864 |
|---|---|
| author | Xiuyu Jin Ziting Zhu Qiusu Miao Chen Fang Di Huang Raynald Giovine Linfeng Chen Chaochao Dun Jeffrey J. Urban Yanbao Fu Defu Li Katie Liu Yunfei Wang Tianyu Zhu Chenhui Zhu Wei Tong Gao Liu |
| author_facet | Xiuyu Jin Ziting Zhu Qiusu Miao Chen Fang Di Huang Raynald Giovine Linfeng Chen Chaochao Dun Jeffrey J. Urban Yanbao Fu Defu Li Katie Liu Yunfei Wang Tianyu Zhu Chenhui Zhu Wei Tong Gao Liu |
| author_sort | Xiuyu Jin |
| collection | DOAJ |
| description | Abstract The eco‐friendly processing of conjugated polymer binder for lithium‐ion batteries demands improved polymer solubility by introducing functional moieties, while this strategy will concurrently sacrifice polymer conductivity. Employing the polyfluorene‐based binder poly(2,7‐9,9 (di(oxy‐2,5,8‐trioxadecane))fluorene) (PFO), soluble in water‐ethanol mixtures, a novel approach is presented to solve this trade‐off, which features integration of aqueous solution processing with subsequent controlled thermal‐induced cleavage of solubilizing side chains, to produce hierarchically ordered structures (HOS). The thermal processing can enhance the intermolecular π–π stacking of polyfluorene backbone for better electrochemical performance. Notably, HOS‐PFO demonstrated a substantial 6–7 orders of magnitude enhancement in electronic conductivity, showcasing its potential as a functional binder for lithium‐ion batteries. As an illustration, HOS‐PFO protected SiOx anodes, utilizing in situ side chain decomposition of PFO surrounding SiOx particles after aqueous processing are fabricated. HOS‐PFO contributed to the stable cycling and high‐capacity retention of practical SiOx anodes (3.0 mAh cm−2), without the use of any conducting carbon additives or fluorinated electrolyte additives. It is proposed that this technique represents a universal approach for fabricating electrodes with conjugated polymer binders from aqueous solutions without compromising conductivity. |
| format | Article |
| id | doaj-art-3a3a941c24964a21a4c87d7b4b2b04bd |
| institution | OA Journals |
| issn | 2198-3844 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | Wiley |
| record_format | Article |
| series | Advanced Science |
| spelling | doaj-art-3a3a941c24964a21a4c87d7b4b2b04bd2025-08-20T02:28:15ZengWileyAdvanced Science2198-38442025-05-011217n/an/a10.1002/advs.202416995Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion BatteriesXiuyu Jin0Ziting Zhu1Qiusu Miao2Chen Fang3Di Huang4Raynald Giovine5Linfeng Chen6Chaochao Dun7Jeffrey J. Urban8Yanbao Fu9Defu Li10Katie Liu11Yunfei Wang12Tianyu Zhu13Chenhui Zhu14Wei Tong15Gao Liu16The Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAPines Magnetic Resonance Center (PMRC)‐Core Facility College of Chemistry University of California Berkeley CA 94720 USAThe Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAAdvanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USADepartment of Materials Science and Engineering Clemson University Clemson SC 29634 USAAdvanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAAbstract The eco‐friendly processing of conjugated polymer binder for lithium‐ion batteries demands improved polymer solubility by introducing functional moieties, while this strategy will concurrently sacrifice polymer conductivity. Employing the polyfluorene‐based binder poly(2,7‐9,9 (di(oxy‐2,5,8‐trioxadecane))fluorene) (PFO), soluble in water‐ethanol mixtures, a novel approach is presented to solve this trade‐off, which features integration of aqueous solution processing with subsequent controlled thermal‐induced cleavage of solubilizing side chains, to produce hierarchically ordered structures (HOS). The thermal processing can enhance the intermolecular π–π stacking of polyfluorene backbone for better electrochemical performance. Notably, HOS‐PFO demonstrated a substantial 6–7 orders of magnitude enhancement in electronic conductivity, showcasing its potential as a functional binder for lithium‐ion batteries. As an illustration, HOS‐PFO protected SiOx anodes, utilizing in situ side chain decomposition of PFO surrounding SiOx particles after aqueous processing are fabricated. HOS‐PFO contributed to the stable cycling and high‐capacity retention of practical SiOx anodes (3.0 mAh cm−2), without the use of any conducting carbon additives or fluorinated electrolyte additives. It is proposed that this technique represents a universal approach for fabricating electrodes with conjugated polymer binders from aqueous solutions without compromising conductivity.https://doi.org/10.1002/advs.202416995conjugated polymerconductive binderhierarchically ordered structurelithium‐ion batterygreen processing |
| spellingShingle | Xiuyu Jin Ziting Zhu Qiusu Miao Chen Fang Di Huang Raynald Giovine Linfeng Chen Chaochao Dun Jeffrey J. Urban Yanbao Fu Defu Li Katie Liu Yunfei Wang Tianyu Zhu Chenhui Zhu Wei Tong Gao Liu Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries Advanced Science conjugated polymer conductive binder hierarchically ordered structure lithium‐ion battery green processing |
| title | Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries |
| title_full | Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries |
| title_fullStr | Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries |
| title_full_unstemmed | Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries |
| title_short | Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries |
| title_sort | green electrode processing enabled by fluoro free multifunctional binders for lithium ion batteries |
| topic | conjugated polymer conductive binder hierarchically ordered structure lithium‐ion battery green processing |
| url | https://doi.org/10.1002/advs.202416995 |
| work_keys_str_mv | AT xiuyujin greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT zitingzhu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT qiusumiao greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT chenfang greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT dihuang greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT raynaldgiovine greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT linfengchen greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT chaochaodun greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT jeffreyjurban greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT yanbaofu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT defuli greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT katieliu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT yunfeiwang greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT tianyuzhu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT chenhuizhu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT weitong greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries AT gaoliu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries |