Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries

Abstract The eco‐friendly processing of conjugated polymer binder for lithium‐ion batteries demands improved polymer solubility by introducing functional moieties, while this strategy will concurrently sacrifice polymer conductivity. Employing the polyfluorene‐based binder poly(2,7‐9,9 (di(oxy‐2,5,8...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiuyu Jin, Ziting Zhu, Qiusu Miao, Chen Fang, Di Huang, Raynald Giovine, Linfeng Chen, Chaochao Dun, Jeffrey J. Urban, Yanbao Fu, Defu Li, Katie Liu, Yunfei Wang, Tianyu Zhu, Chenhui Zhu, Wei Tong, Gao Liu
Format: Article
Language:English
Published: Wiley 2025-05-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202416995
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850144773178916864
author Xiuyu Jin
Ziting Zhu
Qiusu Miao
Chen Fang
Di Huang
Raynald Giovine
Linfeng Chen
Chaochao Dun
Jeffrey J. Urban
Yanbao Fu
Defu Li
Katie Liu
Yunfei Wang
Tianyu Zhu
Chenhui Zhu
Wei Tong
Gao Liu
author_facet Xiuyu Jin
Ziting Zhu
Qiusu Miao
Chen Fang
Di Huang
Raynald Giovine
Linfeng Chen
Chaochao Dun
Jeffrey J. Urban
Yanbao Fu
Defu Li
Katie Liu
Yunfei Wang
Tianyu Zhu
Chenhui Zhu
Wei Tong
Gao Liu
author_sort Xiuyu Jin
collection DOAJ
description Abstract The eco‐friendly processing of conjugated polymer binder for lithium‐ion batteries demands improved polymer solubility by introducing functional moieties, while this strategy will concurrently sacrifice polymer conductivity. Employing the polyfluorene‐based binder poly(2,7‐9,9 (di(oxy‐2,5,8‐trioxadecane))fluorene) (PFO), soluble in water‐ethanol mixtures, a novel approach is presented to solve this trade‐off, which features integration of aqueous solution processing with subsequent controlled thermal‐induced cleavage of solubilizing side chains, to produce hierarchically ordered structures (HOS). The thermal processing can enhance the intermolecular π–π stacking of polyfluorene backbone for better electrochemical performance. Notably, HOS‐PFO demonstrated a substantial 6–7 orders of magnitude enhancement in electronic conductivity, showcasing its potential as a functional binder for lithium‐ion batteries. As an illustration, HOS‐PFO protected SiOx anodes, utilizing in situ side chain decomposition of PFO surrounding SiOx particles after aqueous processing are fabricated. HOS‐PFO contributed to the stable cycling and high‐capacity retention of practical SiOx anodes (3.0 mAh cm−2), without the use of any conducting carbon additives or fluorinated electrolyte additives. It is proposed that this technique represents a universal approach for fabricating electrodes with conjugated polymer binders from aqueous solutions without compromising conductivity.
format Article
id doaj-art-3a3a941c24964a21a4c87d7b4b2b04bd
institution OA Journals
issn 2198-3844
language English
publishDate 2025-05-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj-art-3a3a941c24964a21a4c87d7b4b2b04bd2025-08-20T02:28:15ZengWileyAdvanced Science2198-38442025-05-011217n/an/a10.1002/advs.202416995Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion BatteriesXiuyu Jin0Ziting Zhu1Qiusu Miao2Chen Fang3Di Huang4Raynald Giovine5Linfeng Chen6Chaochao Dun7Jeffrey J. Urban8Yanbao Fu9Defu Li10Katie Liu11Yunfei Wang12Tianyu Zhu13Chenhui Zhu14Wei Tong15Gao Liu16The Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAPines Magnetic Resonance Center (PMRC)‐Core Facility College of Chemistry University of California Berkeley CA 94720 USAThe Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAAdvanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USADepartment of Materials Science and Engineering Clemson University Clemson SC 29634 USAAdvanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAThe Energy Storage and Distributed Resources Division (ESDR) Lawrence Berkeley National Laboratory Berkeley CA 94720 USAAbstract The eco‐friendly processing of conjugated polymer binder for lithium‐ion batteries demands improved polymer solubility by introducing functional moieties, while this strategy will concurrently sacrifice polymer conductivity. Employing the polyfluorene‐based binder poly(2,7‐9,9 (di(oxy‐2,5,8‐trioxadecane))fluorene) (PFO), soluble in water‐ethanol mixtures, a novel approach is presented to solve this trade‐off, which features integration of aqueous solution processing with subsequent controlled thermal‐induced cleavage of solubilizing side chains, to produce hierarchically ordered structures (HOS). The thermal processing can enhance the intermolecular π–π stacking of polyfluorene backbone for better electrochemical performance. Notably, HOS‐PFO demonstrated a substantial 6–7 orders of magnitude enhancement in electronic conductivity, showcasing its potential as a functional binder for lithium‐ion batteries. As an illustration, HOS‐PFO protected SiOx anodes, utilizing in situ side chain decomposition of PFO surrounding SiOx particles after aqueous processing are fabricated. HOS‐PFO contributed to the stable cycling and high‐capacity retention of practical SiOx anodes (3.0 mAh cm−2), without the use of any conducting carbon additives or fluorinated electrolyte additives. It is proposed that this technique represents a universal approach for fabricating electrodes with conjugated polymer binders from aqueous solutions without compromising conductivity.https://doi.org/10.1002/advs.202416995conjugated polymerconductive binderhierarchically ordered structurelithium‐ion batterygreen processing
spellingShingle Xiuyu Jin
Ziting Zhu
Qiusu Miao
Chen Fang
Di Huang
Raynald Giovine
Linfeng Chen
Chaochao Dun
Jeffrey J. Urban
Yanbao Fu
Defu Li
Katie Liu
Yunfei Wang
Tianyu Zhu
Chenhui Zhu
Wei Tong
Gao Liu
Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries
Advanced Science
conjugated polymer
conductive binder
hierarchically ordered structure
lithium‐ion battery
green processing
title Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries
title_full Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries
title_fullStr Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries
title_full_unstemmed Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries
title_short Green Electrode Processing Enabled by Fluoro‐Free Multifunctional Binders for Lithium‐Ion Batteries
title_sort green electrode processing enabled by fluoro free multifunctional binders for lithium ion batteries
topic conjugated polymer
conductive binder
hierarchically ordered structure
lithium‐ion battery
green processing
url https://doi.org/10.1002/advs.202416995
work_keys_str_mv AT xiuyujin greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT zitingzhu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT qiusumiao greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT chenfang greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT dihuang greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT raynaldgiovine greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT linfengchen greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT chaochaodun greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT jeffreyjurban greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT yanbaofu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT defuli greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT katieliu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT yunfeiwang greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT tianyuzhu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT chenhuizhu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT weitong greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries
AT gaoliu greenelectrodeprocessingenabledbyfluorofreemultifunctionalbindersforlithiumionbatteries