A survey of deep learning-based MRI stroke lesion segmentation methods
Automatic stroke lesion segmentation has become a research hotspot in recent years.In order to comprehensively review current progress of deep learning-based MRI stroke lesion segmentation methods, start with the clinical problems of stroke treatment, we further elaborate the research background and...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
POSTS&TELECOM PRESS Co., LTD
2023-09-01
|
| Series: | 智能科学与技术学报 |
| Subjects: | |
| Online Access: | http://www.cjist.com.cn/thesisDetails#10.11959/j.issn.2096-6652.202328 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Automatic stroke lesion segmentation has become a research hotspot in recent years.In order to comprehensively review current progress of deep learning-based MRI stroke lesion segmentation methods, start with the clinical problems of stroke treatment, we further elaborate the research background and challenges of deep learning-based lesion segmentation, and introduce common public datasets (ISLES and ATLAS) for stroke lesion segmentation.Then, we focus on the innovation and progress of deep learning-based stroke lesion segmentation methods, and summarize the research progress from three perspectives: network structure, training strategy, and loss function, and compare the advantages and disadvantages of various methods.Finally, we discusse the difficulties and challenges in this research and its future development trend. |
|---|---|
| ISSN: | 2096-6652 |