Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$

Our aim in this paper is to show that the modulus of smoothness and the $K$-functionals constructed from the Sobolev-type space corresponding to the Dunkl operator are equivalent on the interval $(-1,1)$.

Saved in:
Bibliographic Details
Main Authors: Saadi, Faouaz, Daher, Radouan
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.517/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206222031159296
author Saadi, Faouaz
Daher, Radouan
author_facet Saadi, Faouaz
Daher, Radouan
author_sort Saadi, Faouaz
collection DOAJ
description Our aim in this paper is to show that the modulus of smoothness and the $K$-functionals constructed from the Sobolev-type space corresponding to the Dunkl operator are equivalent on the interval $(-1,1)$.
format Article
id doaj-art-3a138104ce6a4b33b0bdeceaf3b095e8
institution Kabale University
issn 1778-3569
language English
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-3a138104ce6a4b33b0bdeceaf3b095e82025-02-07T11:11:47ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G101625163310.5802/crmath.51710.5802/crmath.517Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$Saadi, Faouaz0Daher, Radouan1Department of Mathematics, Laboratory of Topology, Algebra, Geometry, and Discrete Mathematics, Faculty of Sciences Aïn Chock University Hassan II, Casablanca, MoroccoDepartment of Mathematics, Laboratory of Topology, Algebra, Geometry, and Discrete Mathematics, Faculty of Sciences Aïn Chock University Hassan II, Casablanca, MoroccoOur aim in this paper is to show that the modulus of smoothness and the $K$-functionals constructed from the Sobolev-type space corresponding to the Dunkl operator are equivalent on the interval $(-1,1)$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.517/Fourier–Dunkl seriesDunkl transformgeneralized translation operator$K$-functionalsmodulus of smoothness
spellingShingle Saadi, Faouaz
Daher, Radouan
Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$
Comptes Rendus. Mathématique
Fourier–Dunkl series
Dunkl transform
generalized translation operator
$K$-functionals
modulus of smoothness
title Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$
title_full Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$
title_fullStr Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$
title_full_unstemmed Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$
title_short Equivalence of K-functionals and modulus of smoothness generated by a Dunkl type operator on the interval $(-1, 1)$
title_sort equivalence of k functionals and modulus of smoothness generated by a dunkl type operator on the interval 1 1
topic Fourier–Dunkl series
Dunkl transform
generalized translation operator
$K$-functionals
modulus of smoothness
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.517/
work_keys_str_mv AT saadifaouaz equivalenceofkfunctionalsandmodulusofsmoothnessgeneratedbyadunkltypeoperatorontheinterval11
AT daherradouan equivalenceofkfunctionalsandmodulusofsmoothnessgeneratedbyadunkltypeoperatorontheinterval11