Modeling the inside defect of the jet cavitator

Introduction. The investigation of the hydrodynamic cavitator operation used under the erosion impact on a solid body surface, and of the device structure optimization for increasing the damage capability of the cavitating jet is presented. The effect of a sporadic defect of the combined nozzle insi...

Full description

Saved in:
Bibliographic Details
Main Authors: A. I. Ukolov, V. P. Rodionov
Format: Article
Language:Russian
Published: Don State Technical University 2018-07-01
Series:Advanced Engineering Research
Subjects:
Online Access:https://www.vestnik-donstu.ru/jour/article/view/479
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849408896035192832
author A. I. Ukolov
V. P. Rodionov
author_facet A. I. Ukolov
V. P. Rodionov
author_sort A. I. Ukolov
collection DOAJ
description Introduction. The investigation of the hydrodynamic cavitator operation used under the erosion impact on a solid body surface, and of the device structure optimization for increasing the damage capability of the cavitating jet is presented. The effect of a sporadic defect of the combined nozzle inside on the volume fraction of the vapor content and the cavitation region geometry is considered. The work objective is to identify the influence pattern of the inside defect of cavitators of various sizes on the hydrodynamic and cavitational characteristics of the nozzle through numerical modeling. Materials and Methods. The features of the ANSYS Workbench finite-element analysis software package and the integrated optimization module of the development and design process in the domain of the computational fluid dynamics ANSYS CFX are used. The simulation is based on the experimental data obtained under the nozzle water discharge at a specially designed laboratory bench under the cavitation condition.Research Results. Graphic dependences of the volume fraction of the vapor content, total pressure and thelength of the cavitation region on the distance along the axis of the jet for different defect sizes are obtained and presented. Two phases of the cavitating jet flow in a nonideal cavitator are identified, and the transition effect on the velocity distribution in the device section is shown. Discussion and Conclusions. The occurrence of an internal defect on the surface of the conical pattern of a combined nozzle with the size of less than a quarter-diameter of the central cylindrical portion may not cause visual changes in the cavitation region geometry, but it significantly reduces the erosive capacity of the cavitation jet. A further defect increase results in a total suppression of the cavitation flow, but maintains its dynamic behavior. The obtained results contribute to the improvement of the hydrodynamic cavitators design, to the enhancement of their erosive impact with the use of cavitation for cleaning underwater structures and mechanisms.
format Article
id doaj-art-39cae626ecb1496594028e78b7e0d5c4
institution Kabale University
issn 2687-1653
language Russian
publishDate 2018-07-01
publisher Don State Technical University
record_format Article
series Advanced Engineering Research
spelling doaj-art-39cae626ecb1496594028e78b7e0d5c42025-08-20T03:35:40ZrusDon State Technical UniversityAdvanced Engineering Research2687-16532018-07-0118214615610.23947/1992-5980-2018-18-2-146-156472Modeling the inside defect of the jet cavitatorA. I. Ukolov0V. P. Rodionov1Kerch State Marine Technological UniversityKuban State Technological UniversityIntroduction. The investigation of the hydrodynamic cavitator operation used under the erosion impact on a solid body surface, and of the device structure optimization for increasing the damage capability of the cavitating jet is presented. The effect of a sporadic defect of the combined nozzle inside on the volume fraction of the vapor content and the cavitation region geometry is considered. The work objective is to identify the influence pattern of the inside defect of cavitators of various sizes on the hydrodynamic and cavitational characteristics of the nozzle through numerical modeling. Materials and Methods. The features of the ANSYS Workbench finite-element analysis software package and the integrated optimization module of the development and design process in the domain of the computational fluid dynamics ANSYS CFX are used. The simulation is based on the experimental data obtained under the nozzle water discharge at a specially designed laboratory bench under the cavitation condition.Research Results. Graphic dependences of the volume fraction of the vapor content, total pressure and thelength of the cavitation region on the distance along the axis of the jet for different defect sizes are obtained and presented. Two phases of the cavitating jet flow in a nonideal cavitator are identified, and the transition effect on the velocity distribution in the device section is shown. Discussion and Conclusions. The occurrence of an internal defect on the surface of the conical pattern of a combined nozzle with the size of less than a quarter-diameter of the central cylindrical portion may not cause visual changes in the cavitation region geometry, but it significantly reduces the erosive capacity of the cavitation jet. A further defect increase results in a total suppression of the cavitation flow, but maintains its dynamic behavior. The obtained results contribute to the improvement of the hydrodynamic cavitators design, to the enhancement of their erosive impact with the use of cavitation for cleaning underwater structures and mechanisms.https://www.vestnik-donstu.ru/jour/article/view/479сavitatorimmersed jetcombined nozzledefectpressurecomputer simulationansys cfx
spellingShingle A. I. Ukolov
V. P. Rodionov
Modeling the inside defect of the jet cavitator
Advanced Engineering Research
сavitator
immersed jet
combined nozzle
defect
pressure
computer simulation
ansys cfx
title Modeling the inside defect of the jet cavitator
title_full Modeling the inside defect of the jet cavitator
title_fullStr Modeling the inside defect of the jet cavitator
title_full_unstemmed Modeling the inside defect of the jet cavitator
title_short Modeling the inside defect of the jet cavitator
title_sort modeling the inside defect of the jet cavitator
topic сavitator
immersed jet
combined nozzle
defect
pressure
computer simulation
ansys cfx
url https://www.vestnik-donstu.ru/jour/article/view/479
work_keys_str_mv AT aiukolov modelingtheinsidedefectofthejetcavitator
AT vprodionov modelingtheinsidedefectofthejetcavitator