Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen

Sentiment analysis is a method for processing consumer reviews. This study examines the application of the Support Vector Machine (SVM) algorithm based on PSO and Information Gain as feature selection to filter attributes as a form of optimization. Algorithm implementation in sentiment analysis is...

Full description

Saved in:
Bibliographic Details
Main Authors: Sharazita Dyah Anggita, Ferian Fauzi Abdulloh
Format: Article
Language:Indonesian
Published: Indonesian Society of Applied Science (ISAS) 2023-07-01
Series:Journal of Applied Computer Science and Technology
Subjects:
Online Access:https://journal.isas.or.id/index.php/JACOST/article/view/524
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849774292622901248
author Sharazita Dyah Anggita
Ferian Fauzi Abdulloh
author_facet Sharazita Dyah Anggita
Ferian Fauzi Abdulloh
author_sort Sharazita Dyah Anggita
collection DOAJ
description Sentiment analysis is a method for processing consumer reviews. This study examines the application of the Support Vector Machine (SVM) algorithm based on PSO and Information Gain as feature selection to filter attributes as a form of optimization. Algorithm implementation in sentiment analysis is carried out by applying a test scenario to measure the level of accuracy of the several parameters used. Selection of the Information Gain feature using the top-k parameter yields an accuracy value of 85.3%. Algortima optimization applying information gain feature selection on the PSO-based SVM resulted in an optimal accuracy rate of 86.81%. The resulting increase in accuracy is 18.84% compared to the application of classic SVM without PSO-based information gain feature selection. Applying information gain feature selection on the PSO-based SVM algorithm can increase the accuracy value in the online sentiment review analysis.
format Article
id doaj-art-39bae5bba019442a857f695257613ec2
institution DOAJ
issn 2723-1453
language Indonesian
publishDate 2023-07-01
publisher Indonesian Society of Applied Science (ISAS)
record_format Article
series Journal of Applied Computer Science and Technology
spelling doaj-art-39bae5bba019442a857f695257613ec22025-08-20T03:01:46ZindIndonesian Society of Applied Science (ISAS)Journal of Applied Computer Science and Technology2723-14532023-07-014110.52158/jacost.v4i1.524524Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen Sharazita Dyah Anggita0Ferian Fauzi Abdulloh1Universitas Amikom Yogyakarta IndonesiaUniversitas AMIKOM Yogyakarta Sentiment analysis is a method for processing consumer reviews. This study examines the application of the Support Vector Machine (SVM) algorithm based on PSO and Information Gain as feature selection to filter attributes as a form of optimization. Algorithm implementation in sentiment analysis is carried out by applying a test scenario to measure the level of accuracy of the several parameters used. Selection of the Information Gain feature using the top-k parameter yields an accuracy value of 85.3%. Algortima optimization applying information gain feature selection on the PSO-based SVM resulted in an optimal accuracy rate of 86.81%. The resulting increase in accuracy is 18.84% compared to the application of classic SVM without PSO-based information gain feature selection. Applying information gain feature selection on the PSO-based SVM algorithm can increase the accuracy value in the online sentiment review analysis. https://journal.isas.or.id/index.php/JACOST/article/view/524Information GainSVMPSO
spellingShingle Sharazita Dyah Anggita
Ferian Fauzi Abdulloh
Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen
Journal of Applied Computer Science and Technology
Information Gain
SVM
PSO
title Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen
title_full Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen
title_fullStr Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen
title_full_unstemmed Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen
title_short Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen
title_sort optimasi algoritma support vector machine berbasis pso dan seleksi fitur information gain pada analisis sentimen
topic Information Gain
SVM
PSO
url https://journal.isas.or.id/index.php/JACOST/article/view/524
work_keys_str_mv AT sharazitadyahanggita optimasialgoritmasupportvectormachineberbasispsodanseleksifiturinformationgainpadaanalisissentimen
AT ferianfauziabdulloh optimasialgoritmasupportvectormachineberbasispsodanseleksifiturinformationgainpadaanalisissentimen