Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth

We study the following fractional Kirchhoff-Choquard equation: a+b∫RN(−Δ)s2u2dx(−Δ)su+V(x)u=(Iμ*F(u))f(u),x∈RN,u∈Hs(RN),\left\{\begin{array}{l}\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}{\left|{\left(-\Delta )}^{\frac{s}{2}}u\right|}^{2}{\rm{d}}x\right){\left(-\Delta )}^{s}u+V\...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang Jie, Chen Haibo
Format: Article
Language:English
Published: De Gruyter 2025-04-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2025-0075
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849726529304526848
author Yang Jie
Chen Haibo
author_facet Yang Jie
Chen Haibo
author_sort Yang Jie
collection DOAJ
description We study the following fractional Kirchhoff-Choquard equation: a+b∫RN(−Δ)s2u2dx(−Δ)su+V(x)u=(Iμ*F(u))f(u),x∈RN,u∈Hs(RN),\left\{\begin{array}{l}\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}{\left|{\left(-\Delta )}^{\frac{s}{2}}u\right|}^{2}{\rm{d}}x\right){\left(-\Delta )}^{s}u+V\left(x)u=\left({I}_{\mu }* F\left(u))f\left(u),\hspace{1em}x\in {{\mathbb{R}}}^{N},\hspace{1.0em}\\ u\in {H}^{s}\left({{\mathbb{R}}}^{N}),\hspace{1.0em}\end{array}\right. where a,ba,b are positive constants, N>2sN\gt 2s, μ∈((N−4s)+,N)\mu \in \left({\left(N-4s)}_{+},N), s∈(0,1)s\in \left(0,1), and Iμ{I}_{\mu } is the Riesz potential. Considering the case that nonlinearity ff has critical growth, combining a monotonicity trick and global compactness lemma, we prove that the equation has a ground-state solution. Moreover, we study the regularity of ground-state solutions to the above equation, which extends the results in Moroz-Van Schaftingen [Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557–6579] to the fractional Laplacian case.
format Article
id doaj-art-3960fda21cf846d3b054a3f3bb565458
institution DOAJ
issn 2191-950X
language English
publishDate 2025-04-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj-art-3960fda21cf846d3b054a3f3bb5654582025-08-20T03:10:09ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2025-04-0114128147610.1515/anona-2025-0075Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growthYang Jie0Chen Haibo1School of Mathematics and Computational Science, Huaihua University, Huaihua, Hunan 418008, PR ChinaSchool of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, PR ChinaWe study the following fractional Kirchhoff-Choquard equation: a+b∫RN(−Δ)s2u2dx(−Δ)su+V(x)u=(Iμ*F(u))f(u),x∈RN,u∈Hs(RN),\left\{\begin{array}{l}\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}{\left|{\left(-\Delta )}^{\frac{s}{2}}u\right|}^{2}{\rm{d}}x\right){\left(-\Delta )}^{s}u+V\left(x)u=\left({I}_{\mu }* F\left(u))f\left(u),\hspace{1em}x\in {{\mathbb{R}}}^{N},\hspace{1.0em}\\ u\in {H}^{s}\left({{\mathbb{R}}}^{N}),\hspace{1.0em}\end{array}\right. where a,ba,b are positive constants, N>2sN\gt 2s, μ∈((N−4s)+,N)\mu \in \left({\left(N-4s)}_{+},N), s∈(0,1)s\in \left(0,1), and Iμ{I}_{\mu } is the Riesz potential. Considering the case that nonlinearity ff has critical growth, combining a monotonicity trick and global compactness lemma, we prove that the equation has a ground-state solution. Moreover, we study the regularity of ground-state solutions to the above equation, which extends the results in Moroz-Van Schaftingen [Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557–6579] to the fractional Laplacian case.https://doi.org/10.1515/anona-2025-0075kirchhoff-choquard equationfractionalground-state solutionpohozaev identity35r1149j35
spellingShingle Yang Jie
Chen Haibo
Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth
Advances in Nonlinear Analysis
kirchhoff-choquard equation
fractional
ground-state solution
pohozaev identity
35r11
49j35
title Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth
title_full Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth
title_fullStr Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth
title_full_unstemmed Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth
title_short Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth
title_sort ground state solutions for fractional kirchhoff choquard equations with critical growth
topic kirchhoff-choquard equation
fractional
ground-state solution
pohozaev identity
35r11
49j35
url https://doi.org/10.1515/anona-2025-0075
work_keys_str_mv AT yangjie groundstatesolutionsforfractionalkirchhoffchoquardequationswithcriticalgrowth
AT chenhaibo groundstatesolutionsforfractionalkirchhoffchoquardequationswithcriticalgrowth