Testing holographic entropy inequalities in 2 + 1 dimensions
Abstract We address the question of whether holographic entropy inequalities obeyed in static states (by the RT formula) are always obeyed in time-dependent states (by the HRT formula), focusing on the case where the bulk spacetime is 2 + 1 dimensional. An affirmative answer to this question was pre...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2025-01-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP01(2025)065 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832595035317600256 |
---|---|
author | Brianna Grado-White Guglielmo Grimaldi Matthew Headrick Veronika E. Hubeny |
author_facet | Brianna Grado-White Guglielmo Grimaldi Matthew Headrick Veronika E. Hubeny |
author_sort | Brianna Grado-White |
collection | DOAJ |
description | Abstract We address the question of whether holographic entropy inequalities obeyed in static states (by the RT formula) are always obeyed in time-dependent states (by the HRT formula), focusing on the case where the bulk spacetime is 2 + 1 dimensional. An affirmative answer to this question was previously claimed by Czech-Dong. We point out an error in their proof when the bulk is multiply connected. We nonetheless find strong support, of two kinds, for an affirmative answer in that case. We extend the Czech-Dong proof for simply-connected spacetimes to spacetimes with π 1 = ℤ (i.e. 2-boundary, genus-0 wormholes). Specializing to vacuum solutions, we also numerically test thousands of distinct inequalities (including all known RT inequalities for up to 6 regions) on millions of randomly chosen configurations of regions and bulk spacetimes, including three different multiply-connected topologies; we find no counterexamples. In an appendix, we prove some (dimension-independent) facts about degenerate HRT surfaces and symmetry breaking. A video abstract is available at https://www.youtube.com/watch?v=ols92YU8rus. |
format | Article |
id | doaj-art-394175c8887f41d09fad3c4b8fd9e6d6 |
institution | Kabale University |
issn | 1029-8479 |
language | English |
publishDate | 2025-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj-art-394175c8887f41d09fad3c4b8fd9e6d62025-01-19T12:06:44ZengSpringerOpenJournal of High Energy Physics1029-84792025-01-012025113310.1007/JHEP01(2025)065Testing holographic entropy inequalities in 2 + 1 dimensionsBrianna Grado-White0Guglielmo Grimaldi1Matthew Headrick2Veronika E. Hubeny3Martin Fisher School of Physics, Brandeis UniversityMartin Fisher School of Physics, Brandeis UniversityMartin Fisher School of Physics, Brandeis UniversityCenter for Quantum Mathematics and Physics (QMAP), Department of Physics & Astronomy, University of CaliforniaAbstract We address the question of whether holographic entropy inequalities obeyed in static states (by the RT formula) are always obeyed in time-dependent states (by the HRT formula), focusing on the case where the bulk spacetime is 2 + 1 dimensional. An affirmative answer to this question was previously claimed by Czech-Dong. We point out an error in their proof when the bulk is multiply connected. We nonetheless find strong support, of two kinds, for an affirmative answer in that case. We extend the Czech-Dong proof for simply-connected spacetimes to spacetimes with π 1 = ℤ (i.e. 2-boundary, genus-0 wormholes). Specializing to vacuum solutions, we also numerically test thousands of distinct inequalities (including all known RT inequalities for up to 6 regions) on millions of randomly chosen configurations of regions and bulk spacetimes, including three different multiply-connected topologies; we find no counterexamples. In an appendix, we prove some (dimension-independent) facts about degenerate HRT surfaces and symmetry breaking. A video abstract is available at https://www.youtube.com/watch?v=ols92YU8rus.https://doi.org/10.1007/JHEP01(2025)065AdS-CFT CorrespondenceBlack HolesDuality in Gauge Field Theories |
spellingShingle | Brianna Grado-White Guglielmo Grimaldi Matthew Headrick Veronika E. Hubeny Testing holographic entropy inequalities in 2 + 1 dimensions Journal of High Energy Physics AdS-CFT Correspondence Black Holes Duality in Gauge Field Theories |
title | Testing holographic entropy inequalities in 2 + 1 dimensions |
title_full | Testing holographic entropy inequalities in 2 + 1 dimensions |
title_fullStr | Testing holographic entropy inequalities in 2 + 1 dimensions |
title_full_unstemmed | Testing holographic entropy inequalities in 2 + 1 dimensions |
title_short | Testing holographic entropy inequalities in 2 + 1 dimensions |
title_sort | testing holographic entropy inequalities in 2 1 dimensions |
topic | AdS-CFT Correspondence Black Holes Duality in Gauge Field Theories |
url | https://doi.org/10.1007/JHEP01(2025)065 |
work_keys_str_mv | AT briannagradowhite testingholographicentropyinequalitiesin21dimensions AT guglielmogrimaldi testingholographicentropyinequalitiesin21dimensions AT matthewheadrick testingholographicentropyinequalitiesin21dimensions AT veronikaehubeny testingholographicentropyinequalitiesin21dimensions |