Effects of Short-Term Traffic-Related Air Pollution Exposure on Nasal Microbiome in Young Healthy Adults: A Randomized Crossover Controlled Trial

Traffic-related air pollution (TRAP) remains a concern for public health. However, the exact mechanisms through which TRAP affects the respiratory system are still not fully understood. This study aimed to investigate the nasal microbiome change in healthy adults after short-term exposure to TRAP, c...

Full description

Saved in:
Bibliographic Details
Main Authors: Luwei Qin, Jingqi Pan, Demin Feng, Bingqing Yu, Shunyu Li, Xingyu Liu, Yuefei Jin, Shenshen Zhu, Weidong Wu, Wenjie Yang
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Toxics
Subjects:
Online Access:https://www.mdpi.com/2305-6304/13/3/180
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traffic-related air pollution (TRAP) remains a concern for public health. However, the exact mechanisms through which TRAP affects the respiratory system are still not fully understood. This study aimed to investigate the nasal microbiome change in healthy adults after short-term exposure to TRAP, contributing to the understanding of the adverse health effects associated with TRAP. A randomized crossover controlled trial was conducted from 9 March to 30 March 2024 among college students aged 19–24 years. Twenty healthy students were recruited through a baseline questionnaire survey and randomly assigned into two groups. One group followed a crowed-testing procedure: the park portion, a three-week washout period, and then the road portion, while the other group experienced the opposite procedure. Both groups were fully exposed to either a park environment or a road environment with high traffic volume. Nasal mucus samples were collected from the participants at the end of the trial, and then 16SrRNA sequencing was performed to analyze the differences in compositional structure and diversity of the nasal microbiome when volunteers were exposed to different levels of TRAP. The α-diversity indices, including the Chao1 index (<i>p</i> = 0.0097), observed species index (<i>p</i> = 0.0089), and Faith’s PD index (<i>p</i> = 0.0255), demonstrated a significant increase in the nasal microbiome of healthy adults following short-term exposure to TRAP. Visualization through a two-dimensional NMDS plot (stress value < 0.2) indicated that nasal bacterial species distribution became richer after TRAP exposure. Furthermore, the relative abundance of nasal <i>Firmicutes</i> (<i>Bacillota</i>), <i>Bacteroidota</i>, and <i>Actinobacteriota</i> phyla, especially <i>Firmicutes</i> phylum, exhibited a richer distribution after conducting the trial in the road environment with high levels of TRAP, which was shown in the significance test of signature species. Collectively, our study indicates that short-term exposure to TRAP can affect the composition of the nasal microbiota in healthy adults. These findings offer a scientific basis for understanding how TRAP causes respiratory diseases.
ISSN:2305-6304