THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE

In this paper, the local density \((l d)\) and the local weak density \((l w d)\) in the space of permutation degree as well as the cardinal and topological properties of Hattori spaces are studied. In other words, we study the properties of the functor of permutation degree \(S P^{n}\) and the subf...

Full description

Saved in:
Bibliographic Details
Main Authors: Tursun K. Yuldashev, Farhod G. Mukhamadiev
Format: Article
Language:English
Published: Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics 2020-12-01
Series:Ural Mathematical Journal
Subjects:
Online Access:https://umjuran.ru/index.php/umj/article/view/250
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849246923609866240
author Tursun K. Yuldashev
Farhod G. Mukhamadiev
author_facet Tursun K. Yuldashev
Farhod G. Mukhamadiev
author_sort Tursun K. Yuldashev
collection DOAJ
description In this paper, the local density \((l d)\) and the local weak density \((l w d)\) in the space of permutation degree as well as the cardinal and topological properties of Hattori spaces are studied. In other words, we study the properties of the functor of permutation degree \(S P^{n}\) and the subfunctor of permutation degree \(S P_{G}^{n}\),  \(P\) is the cardinal number of topological spaces. Let \(X\) be an infinite \(T_{1}\)-space. We prove that the following propositions hold. (1) Let \(Y^{n} \subset X^{n}\); (A) if \(d\, \left(Y^{n} \right)=d\, \left(X^{n} \right)\), then \(d\, \left(S P^{n} Y\right)=d\, \left(SP^{n} X\right)\); (B) if \(l w d\, \left(Y^{n} \right)=l w d\, \left(X^{n} \right)\), then \(l w d\, \left(S P^{n} Y\right)=l w d\, \left(S P^{n} X\right)\).  (2) Let \(Y\subset X\); (A) if \(l d \,(Y)=l d \,(X)\), then \(l d\, \left(S P^{n} Y\right)=l d\, \left(S P^{n} X\right)\); (B) if \(w d \,(Y)=w d \,(X)\), then \(w d\, \left(S P^{n} Y\right)=w d\, \left(S P^{n} X\right)\). (3) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is a locally compact \(T_{1}\)-space, then \(S P^{n} X, \, S P_{G}^{n} X\), and \(\exp _{n} X\) are \(k\)-spaces. (4) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is an infinite \(T_{1}\)-space, then \(n \,\pi \,w \left(X\right)=n \, \pi \,w \left(S P^{n} X \right)=n \,\pi \,w \left(S P_{G}^{n} X \right)=n \,\pi \,w \left(\exp _{n} X \right)\). We also have studied that the functors \(SP^{n},\) \(SP_{G}^{n} ,\) and \(\exp _{n} \) preserve any \(k\)-space. The functors \(SP^{2}\) and \(SP_{G}^{3}\) do not preserve Hattori spaces on the real line. Besides, it is proved that the density of an infinite \(T_{1}\)-space \(X\) coincides with the densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\). It is also shown that the weak density of an infinite \(T_{1}\)-space \(X\) coincides with the weak densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\).
format Article
id doaj-art-391e5510388c4c0c8a201a856c388a0a
institution Kabale University
issn 2414-3952
language English
publishDate 2020-12-01
publisher Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics
record_format Article
series Ural Mathematical Journal
spelling doaj-art-391e5510388c4c0c8a201a856c388a0a2025-08-20T03:58:22ZengUral Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and MechanicsUral Mathematical Journal2414-39522020-12-016210.15826/umj.2020.2.011109THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACETursun K. Yuldashev0Farhod G. Mukhamadiev1National University of Uzbekistan, 700174, TashkentNational University of Uzbekistan, 700174, TashkentIn this paper, the local density \((l d)\) and the local weak density \((l w d)\) in the space of permutation degree as well as the cardinal and topological properties of Hattori spaces are studied. In other words, we study the properties of the functor of permutation degree \(S P^{n}\) and the subfunctor of permutation degree \(S P_{G}^{n}\),  \(P\) is the cardinal number of topological spaces. Let \(X\) be an infinite \(T_{1}\)-space. We prove that the following propositions hold. (1) Let \(Y^{n} \subset X^{n}\); (A) if \(d\, \left(Y^{n} \right)=d\, \left(X^{n} \right)\), then \(d\, \left(S P^{n} Y\right)=d\, \left(SP^{n} X\right)\); (B) if \(l w d\, \left(Y^{n} \right)=l w d\, \left(X^{n} \right)\), then \(l w d\, \left(S P^{n} Y\right)=l w d\, \left(S P^{n} X\right)\).  (2) Let \(Y\subset X\); (A) if \(l d \,(Y)=l d \,(X)\), then \(l d\, \left(S P^{n} Y\right)=l d\, \left(S P^{n} X\right)\); (B) if \(w d \,(Y)=w d \,(X)\), then \(w d\, \left(S P^{n} Y\right)=w d\, \left(S P^{n} X\right)\). (3) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is a locally compact \(T_{1}\)-space, then \(S P^{n} X, \, S P_{G}^{n} X\), and \(\exp _{n} X\) are \(k\)-spaces. (4) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is an infinite \(T_{1}\)-space, then \(n \,\pi \,w \left(X\right)=n \, \pi \,w \left(S P^{n} X \right)=n \,\pi \,w \left(S P_{G}^{n} X \right)=n \,\pi \,w \left(\exp _{n} X \right)\). We also have studied that the functors \(SP^{n},\) \(SP_{G}^{n} ,\) and \(\exp _{n} \) preserve any \(k\)-space. The functors \(SP^{2}\) and \(SP_{G}^{3}\) do not preserve Hattori spaces on the real line. Besides, it is proved that the density of an infinite \(T_{1}\)-space \(X\) coincides with the densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\). It is also shown that the weak density of an infinite \(T_{1}\)-space \(X\) coincides with the weak densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\).https://umjuran.ru/index.php/umj/article/view/250local density, local weak density, space of permutation degree, hattori space, covariant functors
spellingShingle Tursun K. Yuldashev
Farhod G. Mukhamadiev
THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE
Ural Mathematical Journal
local density, local weak density, space of permutation degree, hattori space, covariant functors
title THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE
title_full THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE
title_fullStr THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE
title_full_unstemmed THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE
title_short THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE
title_sort local density and the local weak density in the space of permutation degree and in hattori space
topic local density, local weak density, space of permutation degree, hattori space, covariant functors
url https://umjuran.ru/index.php/umj/article/view/250
work_keys_str_mv AT tursunkyuldashev thelocaldensityandthelocalweakdensityinthespaceofpermutationdegreeandinhattorispace
AT farhodgmukhamadiev thelocaldensityandthelocalweakdensityinthespaceofpermutationdegreeandinhattorispace
AT tursunkyuldashev localdensityandthelocalweakdensityinthespaceofpermutationdegreeandinhattorispace
AT farhodgmukhamadiev localdensityandthelocalweakdensityinthespaceofpermutationdegreeandinhattorispace