A uniqueness theorem for meromorphic functions

In this paper, we prove the uniqueness theorem for a special class of meromorphic functions on the complex plane $\mathbb{C}$. In particular, we study the class of meromorphic functions $f$ in the domain $\mathbb{C}\setminus K'$, where $K'$ is the finite set of limit points of simple poles...

Full description

Saved in:
Bibliographic Details
Main Authors: N. Sushchyk, D. Lukivska
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2024-06-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/510
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849415610332610560
author N. Sushchyk
D. Lukivska
author_facet N. Sushchyk
D. Lukivska
author_sort N. Sushchyk
collection DOAJ
description In this paper, we prove the uniqueness theorem for a special class of meromorphic functions on the complex plane $\mathbb{C}$. In particular, we study the class of meromorphic functions $f$ in the domain $\mathbb{C}\setminus K'$, where $K'$ is the finite set of limit points of simple poles of the function $f$. In this class, we describe non-trivial subclasses in which every function $f$ can be uniquely determined by the residues of the function $f$ at its poles. The result covered in this paper is a part of a problem in a spectral operator theory.
format Article
id doaj-art-38e2798a656541aa8003d841ea051651
institution Kabale University
issn 1027-4634
2411-0620
language deu
publishDate 2024-06-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-38e2798a656541aa8003d841ea0516512025-08-20T03:33:27ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202024-06-0161221922410.30970/ms.61.2.219-224510A uniqueness theorem for meromorphic functionsN. Sushchyk0D. Lukivska1Ivan Franko National University of LvivIvan Franko National University of LvivIn this paper, we prove the uniqueness theorem for a special class of meromorphic functions on the complex plane $\mathbb{C}$. In particular, we study the class of meromorphic functions $f$ in the domain $\mathbb{C}\setminus K'$, where $K'$ is the finite set of limit points of simple poles of the function $f$. In this class, we describe non-trivial subclasses in which every function $f$ can be uniquely determined by the residues of the function $f$ at its poles. The result covered in this paper is a part of a problem in a spectral operator theory.http://matstud.org.ua/ojs/index.php/matstud/article/view/510meromorphic functionsblaschke products
spellingShingle N. Sushchyk
D. Lukivska
A uniqueness theorem for meromorphic functions
Математичні Студії
meromorphic functions
blaschke products
title A uniqueness theorem for meromorphic functions
title_full A uniqueness theorem for meromorphic functions
title_fullStr A uniqueness theorem for meromorphic functions
title_full_unstemmed A uniqueness theorem for meromorphic functions
title_short A uniqueness theorem for meromorphic functions
title_sort uniqueness theorem for meromorphic functions
topic meromorphic functions
blaschke products
url http://matstud.org.ua/ojs/index.php/matstud/article/view/510
work_keys_str_mv AT nsushchyk auniquenesstheoremformeromorphicfunctions
AT dlukivska auniquenesstheoremformeromorphicfunctions
AT nsushchyk uniquenesstheoremformeromorphicfunctions
AT dlukivska uniquenesstheoremformeromorphicfunctions