Image cluster algorithm of hybrid encoding method

In the clustering analysis based on swarm intelligence optimization algorithm,the most of encoding method only used single form,and this method might be limit range of search space,the algorithm was easy to fall into local op-timum.In order to solve this problem,image clustering algorithm of hybrid...

Full description

Saved in:
Bibliographic Details
Main Authors: Chun-hui ZHAO, Xue-yuan LI, Ying CUI
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2017-02-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2017022/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the clustering analysis based on swarm intelligence optimization algorithm,the most of encoding method only used single form,and this method might be limit range of search space,the algorithm was easy to fall into local op-timum.In order to solve this problem,image clustering algorithm of hybrid encoding (HEICA) was proposed.Firstly,a hybrid encoding model based on image clustering was established,this method could expand the scope of the search space.Meanwhile,it was combined with two optimization algorithms which improved rain forest algorithm (IRFA) and quantum particle swarm optimization (QPSO),this method could improve the global search capability.In the simulation experiment,it was carried out to illustrate the performance of the proposed method based on four datasets.Compared with results form four measured cluster algorithm.The experimental results show that the algorithm has strong global search capability,high stability and clustering effect.
ISSN:1000-436X