On the transfinite density of sequences and its applications to Dirichlet series
For an increasing to $\infty$ sequence $(\lambda_n)$ of positive numbers let $\displaystyle n(t)=\sum\limits_{\lambda_n\le t}1,\ N(x)=\int\nolimits_{0}^{x}\dfrac{n(t)}{t}dt, \ L_k(t)=\sum\limits_{\lambda_n\le t}\prod\limits_{j=0}^{k-1}\dfrac{1}{\ln_j \lambda_n}$ for $k\ge 1$ and $t\ge t_k=\exp_k (0...
Saved in:
| Main Author: | M. M. Sheremeta |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2025-06-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/641 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Limit theorems for random Dirichlet series: boundary case
by: Alexander Iksanov, et al.
Published: (2025-03-01) -
Note to the behavior of the maximal term of Dirichlet series absolutely convergent in half-plane
by: M.M. Sheremeta
Published: (2021-12-01) -
On close-to-pseudoconvex Dirichlet series
by: O. M. Mulyava, et al.
Published: (2024-06-01) -
Pseudostarlike and pseudoconvex Dirichlet series of the order $\alpha$ and the type $\beta$
by: M.M. Sheremeta
Published: (2020-10-01) -
The Hadamard compositions of Dirichlet series absolutely converging in half-plane
by: M.M. Sheremeta, et al.
Published: (2020-03-01)