Existence of Solutions for Nonlinear Choquard Equations with (<i>p</i>, <i>q</i>)-Laplacian on Finite Weighted Lattice Graphs

In this paper, we consider the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><...

Full description

Saved in:
Bibliographic Details
Main Authors: Dandan Yang, Zhenyu Bai, Chuanzhi Bai
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/11/762
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846154308723146752
author Dandan Yang
Zhenyu Bai
Chuanzhi Bai
author_facet Dandan Yang
Zhenyu Bai
Chuanzhi Bai
author_sort Dandan Yang
collection DOAJ
description In this paper, we consider the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian Choquard equation on a finite weighted lattice graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><msup><mi>K</mi><mi>N</mi></msup><mo>,</mo><mi>E</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></semantics></math></inline-formula>, namely for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><mi>N</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>N</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msub><mo>Δ</mo><mi>p</mi></msub><mi>u</mi><mo>−</mo><msub><mo>Δ</mo><mi>q</mi></msub><mi>u</mi><mo>+</mo><msup><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mrow><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mfenced separators="" open="(" close=")"><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><mi>y</mi><mo>∈</mo><msup><mi>K</mi><mi>N</mi></msup><mo>,</mo><mi>y</mi><mo>≠</mo><mi>x</mi></mrow></munder></mstyle><mstyle scriptlevel="0" displaystyle="true"><mfrac><msup><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>|</mo></mrow><mi>r</mi></msup><mrow><mi>d</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mrow><mi>N</mi><mo>−</mo><mi>α</mi></mrow></msup></mrow></mfrac></mstyle></mfenced><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>ν</mi></msub></semantics></math></inline-formula> is the discrete <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>-Laplacian on graphs, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ν</mi><mo>∈</mo><mo>{</mo><mi>p</mi><mo>.</mo><mi>q</mi><mo>}</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a positive function. Under some suitable conditions on <i>r</i>, we prove that the above equation has both a mountain pass solution and ground state solution. Our research relies on the mountain pass theorem and the method of the Nehari manifold. The results obtained in this paper are extensions of some known studies.
format Article
id doaj-art-38a98f476e2d45a6bd4fce8d3840b787
institution Kabale University
issn 2075-1680
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-38a98f476e2d45a6bd4fce8d3840b7872024-11-26T17:50:49ZengMDPI AGAxioms2075-16802024-11-01131176210.3390/axioms13110762Existence of Solutions for Nonlinear Choquard Equations with (<i>p</i>, <i>q</i>)-Laplacian on Finite Weighted Lattice GraphsDandan Yang0Zhenyu Bai1Chuanzhi Bai2School of Mathematics and Statistics, Huaiyin Normal University, Huaian 223300, ChinaSchool of Mathematics and Statistics, Guizhou University, Guiyang 550025, ChinaSchool of Mathematics and Statistics, Huaiyin Normal University, Huaian 223300, ChinaIn this paper, we consider the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Laplacian Choquard equation on a finite weighted lattice graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><msup><mi>K</mi><mi>N</mi></msup><mo>,</mo><mi>E</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></semantics></math></inline-formula>, namely for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><mi>N</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>N</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msub><mo>Δ</mo><mi>p</mi></msub><mi>u</mi><mo>−</mo><msub><mo>Δ</mo><mi>q</mi></msub><mi>u</mi><mo>+</mo><msup><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mrow><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mfenced separators="" open="(" close=")"><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><mi>y</mi><mo>∈</mo><msup><mi>K</mi><mi>N</mi></msup><mo>,</mo><mi>y</mi><mo>≠</mo><mi>x</mi></mrow></munder></mstyle><mstyle scriptlevel="0" displaystyle="true"><mfrac><msup><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>|</mo></mrow><mi>r</mi></msup><mrow><mi>d</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mrow><mi>N</mi><mo>−</mo><mi>α</mi></mrow></msup></mrow></mfrac></mstyle></mfenced><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>ν</mi></msub></semantics></math></inline-formula> is the discrete <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>-Laplacian on graphs, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ν</mi><mo>∈</mo><mo>{</mo><mi>p</mi><mo>.</mo><mi>q</mi><mo>}</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a positive function. Under some suitable conditions on <i>r</i>, we prove that the above equation has both a mountain pass solution and ground state solution. Our research relies on the mountain pass theorem and the method of the Nehari manifold. The results obtained in this paper are extensions of some known studies.https://www.mdpi.com/2075-1680/13/11/762Choquard equation(<i>p</i>, <i>q</i>)-Laplacianmountain pass theoremlattice graphs
spellingShingle Dandan Yang
Zhenyu Bai
Chuanzhi Bai
Existence of Solutions for Nonlinear Choquard Equations with (<i>p</i>, <i>q</i>)-Laplacian on Finite Weighted Lattice Graphs
Axioms
Choquard equation
(<i>p</i>, <i>q</i>)-Laplacian
mountain pass theorem
lattice graphs
title Existence of Solutions for Nonlinear Choquard Equations with (<i>p</i>, <i>q</i>)-Laplacian on Finite Weighted Lattice Graphs
title_full Existence of Solutions for Nonlinear Choquard Equations with (<i>p</i>, <i>q</i>)-Laplacian on Finite Weighted Lattice Graphs
title_fullStr Existence of Solutions for Nonlinear Choquard Equations with (<i>p</i>, <i>q</i>)-Laplacian on Finite Weighted Lattice Graphs
title_full_unstemmed Existence of Solutions for Nonlinear Choquard Equations with (<i>p</i>, <i>q</i>)-Laplacian on Finite Weighted Lattice Graphs
title_short Existence of Solutions for Nonlinear Choquard Equations with (<i>p</i>, <i>q</i>)-Laplacian on Finite Weighted Lattice Graphs
title_sort existence of solutions for nonlinear choquard equations with i p i i q i laplacian on finite weighted lattice graphs
topic Choquard equation
(<i>p</i>, <i>q</i>)-Laplacian
mountain pass theorem
lattice graphs
url https://www.mdpi.com/2075-1680/13/11/762
work_keys_str_mv AT dandanyang existenceofsolutionsfornonlinearchoquardequationswithipiiqilaplacianonfiniteweightedlatticegraphs
AT zhenyubai existenceofsolutionsfornonlinearchoquardequationswithipiiqilaplacianonfiniteweightedlatticegraphs
AT chuanzhibai existenceofsolutionsfornonlinearchoquardequationswithipiiqilaplacianonfiniteweightedlatticegraphs