Fractal Continuum Maxwell Creep Model

In this work, the fractal continuum Maxwell law for the creep phenomenon is introduced. By mapping standard integer space-time into fractal continuum space-time using the well-known Balankin’s approach to variable-order fractal calculus, the fractal version of Maxwell model is developed. This method...

Full description

Saved in:
Bibliographic Details
Main Authors: Andriy Kryvko, Claudia del C. Gutiérrez-Torres, José Alfredo Jiménez-Bernal, Orlando Susarrey-Huerta, Eduardo Reyes de Luna, Didier Samayoa
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/33
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589106160336896
author Andriy Kryvko
Claudia del C. Gutiérrez-Torres
José Alfredo Jiménez-Bernal
Orlando Susarrey-Huerta
Eduardo Reyes de Luna
Didier Samayoa
author_facet Andriy Kryvko
Claudia del C. Gutiérrez-Torres
José Alfredo Jiménez-Bernal
Orlando Susarrey-Huerta
Eduardo Reyes de Luna
Didier Samayoa
author_sort Andriy Kryvko
collection DOAJ
description In this work, the fractal continuum Maxwell law for the creep phenomenon is introduced. By mapping standard integer space-time into fractal continuum space-time using the well-known Balankin’s approach to variable-order fractal calculus, the fractal version of Maxwell model is developed. This methodology employs local fractional differential operators on discontinuous properties of fractal sets embedded in the integer space-time so that they behave as analytic envelopes of non-analytic functions in the fractal continuum space-time. Then, creep strain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, creep modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and relaxation compliance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> in materials with fractal linear viscoelasticity can be described by their generalized forms, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ε</mi><mi>β</mi></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mspace width="0.166667em"></mspace><msup><mi>J</mi><mi>β</mi></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi> </mi><mi>and</mi><mi> </mi></mrow><msup><mi>G</mi><mi>β</mi></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>=</mo><mi>d</mi><mi>i</mi><mi>m</mi><mi>S</mi><mo>/</mo><mi>d</mi><mi>i</mi><mi>m</mi><mi>H</mi></mrow></semantics></math></inline-formula> represents the time fractal dimension, and it implies the variable-order of fractality of the self-similar domain under study, which are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>i</mi><mi>m</mi><mi>S</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>i</mi><mi>m</mi><mi>H</mi></mrow></semantics></math></inline-formula> for their spectral and Hausdorff dimensions, respectively. The creep behavior depends on beta, which is characterized by its geometry and fractal topology: as beta approaches one, the fractal creep behavior approaches its standard behavior. To illustrate some physical implications of the suggested fractal Maxwell creep model, graphs that showcase the specific details and outcomes of our results are included in this study.
format Article
id doaj-art-38853c79d14f4ee383885181d07513e0
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-38853c79d14f4ee383885181d07513e02025-01-24T13:22:12ZengMDPI AGAxioms2075-16802025-01-011413310.3390/axioms14010033Fractal Continuum Maxwell Creep ModelAndriy Kryvko0Claudia del C. Gutiérrez-Torres1José Alfredo Jiménez-Bernal2Orlando Susarrey-Huerta3Eduardo Reyes de Luna4Didier Samayoa5SEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, MexicoSEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, MexicoSEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, MexicoSEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, MexicoTecnologico de Monterrey, School of Engineering and Sciences, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, MexicoSEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Zacatenco, Unidad Profesional Adolfo López Mateos, Mexico City 07738, MexicoIn this work, the fractal continuum Maxwell law for the creep phenomenon is introduced. By mapping standard integer space-time into fractal continuum space-time using the well-known Balankin’s approach to variable-order fractal calculus, the fractal version of Maxwell model is developed. This methodology employs local fractional differential operators on discontinuous properties of fractal sets embedded in the integer space-time so that they behave as analytic envelopes of non-analytic functions in the fractal continuum space-time. Then, creep strain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, creep modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and relaxation compliance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> in materials with fractal linear viscoelasticity can be described by their generalized forms, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ε</mi><mi>β</mi></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mspace width="0.166667em"></mspace><msup><mi>J</mi><mi>β</mi></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi> </mi><mi>and</mi><mi> </mi></mrow><msup><mi>G</mi><mi>β</mi></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>=</mo><mi>d</mi><mi>i</mi><mi>m</mi><mi>S</mi><mo>/</mo><mi>d</mi><mi>i</mi><mi>m</mi><mi>H</mi></mrow></semantics></math></inline-formula> represents the time fractal dimension, and it implies the variable-order of fractality of the self-similar domain under study, which are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>i</mi><mi>m</mi><mi>S</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mi>i</mi><mi>m</mi><mi>H</mi></mrow></semantics></math></inline-formula> for their spectral and Hausdorff dimensions, respectively. The creep behavior depends on beta, which is characterized by its geometry and fractal topology: as beta approaches one, the fractal creep behavior approaches its standard behavior. To illustrate some physical implications of the suggested fractal Maxwell creep model, graphs that showcase the specific details and outcomes of our results are included in this study.https://www.mdpi.com/2075-1680/14/1/33stress–straincreep modulusMaxwell modellinear viscoelasticityfractal calculusHausdorff dimension
spellingShingle Andriy Kryvko
Claudia del C. Gutiérrez-Torres
José Alfredo Jiménez-Bernal
Orlando Susarrey-Huerta
Eduardo Reyes de Luna
Didier Samayoa
Fractal Continuum Maxwell Creep Model
Axioms
stress–strain
creep modulus
Maxwell model
linear viscoelasticity
fractal calculus
Hausdorff dimension
title Fractal Continuum Maxwell Creep Model
title_full Fractal Continuum Maxwell Creep Model
title_fullStr Fractal Continuum Maxwell Creep Model
title_full_unstemmed Fractal Continuum Maxwell Creep Model
title_short Fractal Continuum Maxwell Creep Model
title_sort fractal continuum maxwell creep model
topic stress–strain
creep modulus
Maxwell model
linear viscoelasticity
fractal calculus
Hausdorff dimension
url https://www.mdpi.com/2075-1680/14/1/33
work_keys_str_mv AT andriykryvko fractalcontinuummaxwellcreepmodel
AT claudiadelcgutierreztorres fractalcontinuummaxwellcreepmodel
AT josealfredojimenezbernal fractalcontinuummaxwellcreepmodel
AT orlandosusarreyhuerta fractalcontinuummaxwellcreepmodel
AT eduardoreyesdeluna fractalcontinuummaxwellcreepmodel
AT didiersamayoa fractalcontinuummaxwellcreepmodel